

TOWN OF ERIE (ORANGE)

PARKDALE FILING NO. 1 SUBDIVISION ZONING: LOW DENSITY RESIDENTIAL (LDR) ERIE LAND USE: LOW DENSITY RESIDENTIAL (LDR)/ OPEN SPACE (OS)

12500 W. 58th AVE. #230 ARVADA, CO 80002 PH: 720.638.5190

LSC TRANSPORTATION CONSULTANTS, INC.

1889 York Street Denver, CO 80206 (303) 333-1105 FAX (303) 333-1107 E-mail: lsc@lscdenver.com

April 17, 2020

Mr. Corey Elliott OEO, LLC 7353 S. Alton Way, Suite A-100 Englewood, CO 80112

> Re: Parkdale Phases 1 - 4 Traffic Impact Analysis Erie, CO LSC #160131

Dear Mr. Elliott:

In response to your request, LSC Transportation Consultants, Inc. has prepared this updated Traffic Impact Analysis (Parkdale TIA) for the proposed Parkdale Phases 1 - 4 residential development to address Town and/or CDOT comments. As shown on Figure 1, the site is located north of E. Baseline Road (SH 7), south of Arapahoe Road, east of N. 119th Street, and west of County Line Road in Erie, Colorado.

REPORT CONTENTS

The report contains the following: the existing roadway and traffic conditions in the vicinity of the site including the lane geometries, traffic controls, posted speed limits, etc.; the existing weekday peak-hour traffic volumes; the existing daily traffic volumes in the area; the typical site-generated traffic volume projections for the site; the 2025 and 2040 assignment of the projected traffic volumes to the area roadways; the projected 2025 and 2040 background and resulting total traffic volumes on the area roadways; the site's projected traffic impacts; and any recommended roadway improvements to mitigate growth in background traffic or the site's traffic impacts.

LAND USE AND ACCESS

The existing site is primarily agricultural and large ranch properties and is proposed to include about 1,550 residential units. Access is proposed at several locations as shown in the conceptual site plan in Figure 2.

ROADWAY AND TRAFFIC CONDITIONS

Area Roadways

The major roadways in the site's vicinity are shown on Figure 1 and are described below.

- **Baseline Road (SH 7)** is an east-west, two-lane state highway south of the site and is classified as a Non-Rural Principal Highway (NR-A) by CDOT. The intersections with N. 119th Street and County Line Road are signalized with auxiliary turn lanes. The posted speed limit in the vicinity of N. 119th Street is 45 mph and in the vicinity of County Line Road is 55 mph. The *Erie Transportation Master Plan* shows a four-lane cross-section by 2030. A four-lane cross-section is assumed to be constructed between 2025 and 2040.
- **N. 119th Street** is a north-south, two-lane arterial roadway west of the site. The intersections with Baseline Road (SH 7) and Arapahoe Road are signalized with auxiliary turn lanes. The posted speed limit in the vicinity of the site is 40 mph. The *Erie Transportation Master Plan* assumes a two-lane principal arterial in 2030 and a six-lane principal arterial for buildout conditions. A four-lane arterial is assumed by 2040.
- **County Line Road** is a north-south, two-lane arterial roadway east of the site. The posted speed limit in the vicinity of the site is 50 mph. The *Erie Transportation Master Plan* assumes a two-lane principal arterial in 2030 and a six-lane principal arterial for buildout conditions. Through traffic on County Line Road is planned to be diverted to proposed Coal Creek Boulevard with the existing County Line Road intersection with SH 7 remaining as a limited right-in/right-out movement intersection to serve local traffic. There will be limited or no access for through traffic.
- **Coal Creek Boulevard** is a future arterial roadway proposed to be constructed one-half mile east of N. 119th Street and provide access to SH 7 for the Parkdale neighborhood and existing County Line Road regional traffic.
- **Arapahoe Road** is an east-west, two-lane arterial roadway north of the site. The posted speed limit in the vicinity of the site is 40 mph. The *Erie Transportation Master Plan* assumes a two-lane minor arterial in 2030 and a four-lane minor arterial for buildout conditions. A four-lane minor arterial is assumed by 2040.

Existing Traffic Conditions

Figure 3 shows the existing lane geometries, traffic controls, posted speed limits, and traffic volumes in the site's vicinity on a typical weekday. The weekday peak-hour traffic volumes and daily traffic volumes are from the attached traffic counts conducted by Counter Measures in September, 2018 and July, 2019.

2025 and 2040 Background Traffic

Figures 4a and 4b show the estimated 2025 background traffic, lane geometry, and traffic control and Figures 5a and 5b show the estimated 2040 background traffic, lane geometry, and traffic control. The 2025 and 2040 background traffic is based on an annual growth rate of two percent on all roadways.

Existing, 2025, and 2040 Background Levels of Service

Level of service (LOS) is a quantitative measure of the level of congestion or delay at an intersection. Level of service is indicated on a scale from "A" to "F." LOS A is indicative of little congestion or delay and LOS F is indicative of a high level of congestion or delay. Attached are specific level of service definitions for signalized and unsignalized intersections.

The intersections in Figures 3, 4a, 4b, 5a, and 5b were analyzed as appropriate to determine the existing, 2025, and 2040 background levels of service using Synchro. Table 1 shows the level of service analysis results. The level of service reports are attached.

- 1. Arapahoe Road/N. 119th Street: This signalized intersection currently operates at an overall LOS "C" during both morning and afternoon peak-hour and is expected to do so through 2040 with implementation of the recommended improvements.
- **4. Arapahoe Road/County Line Road:** This signalized intersection currently operates at an overall LOS "A" during the morning peak-hour and LOS "B" during the afternoon peak-hours and is expected to do so through 2040 with the recommended improvements.
- **8. Coal Creek Boulevard/Main Site Access/Old County Line Road:** This future signalized intersection is expected to operate at LOS "A" during both peak-hours through 2040 with the recommended improvements.
- **9. Coal Cerek Boulevard/Three-Quarter Site Access:** All movements at this future unsignalized intersection are expected to operate at LOS "A" during both peak-hours through 2040.
- **10. N. 119th Street/Full Movement Site Access:** This future signalized intersection is expected to operate at LOS "A" during both peak-hours through 2040.
- **13. N. 119th Street/Three-Quarter Site Access:** All movements at this future unsignalized intersection are expected to operate at LOS "A" during both peak-hours through 2040. This intersection is not expected to meet traffic signal warrants based on the estimated residential trips so is shown as a three-quarter movement intersection to mitigate poor levels of service for the westbound left-turn movement. If the parcel to the south is developed as commercial or other higher trip-generating land use, then the additional trips to this intersection could result in a full movement access and traffic signal control.
- 14. SH 7 (E. Baseline Road)/N. 119th Street: This signalized intersection currently operates at an overall LOS "E" during both peak-hours. By 2025, with implementation of the recommended improvements, the intersection is expected to operate at LOS "C" during both peak-hours through 2040.
- **15. SH 7 (E. Baseline Road)/Coal Creek Boulevard:** This proposed signalized intersection is expected to operate at an overall LOS "C" or better through 2040.
- **16. SH 7 (E. Baseline Road)/County Line Road:** This signalized intersection currently operates at an overall LOS "C" during both peak-hours. Regional traffic is expected to be relocated from County Line Road to Coal Creek Boulevard by 2025 with this intersection remaining to serve local properties north of SH 7. All movements are expected to operate at LOS "D" or better through 2040 if the intersection is converted to right-in/right-out only.

17. SH 7 (Baseline Road)/Future Commercial RIRO: All movements at this future unsignalized intersection are expected to operate at LOS "B" during both peak-hours through 2040.

TRIP GENERATION

Table 2 shows the estimated typical weekday, morning peak-hour, and afternoon peak-hour trip generation for the site based on the rates from *Trip Generation*, 10th Edition, 2017, by the Institute of Transportation Engineers (ITE).

The proposed land use on the site is projected to generate about 13,785 new vehicle-trips on the average weekday, with about half entering and half exiting the site during a 24-hour period. During the morning peak-hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 256 vehicles would enter and about 780 vehicles would exit the site. During the afternoon peak-hour, which generally occurs for one hour between 4:00 and 6:30 p.m., about 857 vehicles would enter and about 505 vehicles would exit the site.

TRIP DISTRIBUTION

Figure 6 shows the estimated directional distribution of the site-generated traffic volumes on the area roadways. The estimates were based on the location of the site with respect to the regional population, employment, and activity centers; and the site's proposed land use.

TRIP ASSIGNMENT

Figures 7a and 7b show the assignment of the 2025 and 2040 site-generated traffic volumes based on the appropriate directional distribution percentages (from Figure 6) and the trip generation estimate (from Table 2).

2025 AND 2040 TOTAL TRAFFIC

Figure 8a shows the 2025 total traffic which is the sum of the 2025 background traffic volumes (from Figure 4a) and the 2025 site-generated traffic volumes (from Figure 7a). Figures 8b and 8c show the recommended 2025 lane geometry and traffic control. Coal Creek Boulevard was assumed to have a posted speed limit of 45 mph. Figure 8c also provides alternative lengths for the turn lanes at Intersections 8, 11, and 12 assuming these lanes are constructed prior to the full construction of Coal Creek Boulevard between SH 7 (Baseline Road) and Arapahoe Road.

Figure 9a shows the 2040 total traffic which is the sum of 2040 background traffic volumes (from Figure 5a) and the 2040 site-generated traffic volumes (from Figure 7b). Figure 9b shows the recommended 2040 lane geometry and traffic control.

PROJECTED LEVELS OF SERVICE

The intersections in Figures 8a, 8b, 9a, and 9b were analyzed to determine the 2025 and 2040 total levels of service. Table 1 shows the level of service analysis results. The level of service reports are attached.

- 1. Arapahoe Road/N. 119th Street: This signalized intersection is expected to operate at an overall LOS "D" or better during both peak-hours through 2025. In 2040, with implementation of the recommended improvements, both peak-hours are expected to operate at LOS "C" or better.
- 2. Arapahoe Road/West Site Access: All movements at this future stop-sign controlled intersection are expected to operate at LOS "C" or better through 2040.
- **3.** Arapahoe Road/East Site Access: All movements at this future stop-sign controlled intersection are expected to operate at LOS "C" or better through 2040.
- **4. Arapahoe Road/County Line Road:** This signalized intersection is expected to operate at an overall LOS "A" during the morning peak-hour and LOS "B" during the afternoon peak-hour through 2025 and is expected to do so through 2040 with implementation of the recommended improvements.

5. Intentionally left blank.

- 6. Coal Creek Boulevard/Phase 4 North Access: All movements at this future stop-sign controlled intersection are expected to operate at LOS "D" or better through 2040.
- 7. Coal Creek Boulevard/Phase 4 South Access: All movements at this future stop-sign controlled intersection are expected to operate at LOS "D" or better through 2040.
- **8. Coal Creek Boulevard/Main Site Access/Old County Line Road:** This future signalized intersection is expected to operate at LOS "A" during both peak-hours through 2040 with implementation of the recommended improvements.
- **9. Coal Creek Boulevard/Three-Quarter Site Access:** All movements at this future stopsign controlled intersection are expected to operate at LOS "B" or better through 2040.
- **10. N. 119th Street/Full Movement Site Access:** This future signalized intersection is expected to operate at LOS "A" during both peak-hours through 2040.
- **11. Old County Line Road/West Site Access:** All movements at this unsignalized intersection are expected to operate at LOS "A" during both peak-hours through 2040.
- **12.** Old County Line Road/East Site Access: All movements at this unsignalized intersection are expected to operate at LOS "A" during both peak-hours through 2040.
- **13. N. 119th Street/Three-Quarter Movement Site Access:** All movements at this unsignalized intersection are expected to operate at LOS "B" or better through 2040. This intersection is not expected to meet traffic signal warrants based on the estimated residential trips so is shown as a three-quarter movement intersection to mitigate poor levels of service for the westbound left-turn movement. If the parcel to the south is developed as commercial or other higher trip-generating land use, then the additional trips to this intersection could result in a full movement access and traffic signal control.

- 14. (SH 7) E. Baseline Road/N. 119th Street: This signalized intersection is expected to operate at an overall LOS "D" during both morning and afternoon peak-hours through 2025 with implementation of the recommended improvements. By 2040, the intersection is expected to operate at LOS "C" during both peak-hours with implementation of the recommended improvements.
- **15. (SH 7) E. Baseline Road/Coal Creek Boulevard:** This future signalized intersection is expected to operate at an overall LOS "C" during both peak-hours through 2025. By 2040, with implementation of the recommended improvements, the intersection is expected to operate at LOS "C" or better during both peak-hours.
- **16.** (SH 7) E. Baseline Road/County Line Road: All movements at this stop-sign controlled intersection are expected to operate at LOS "D" or better during both morning and afternoon peak-hours through 2040 once it is converted to right-in/right-out only.
- **17. SH 7 (Baseline Road)/Future Commercial RIRO:** All movements at this future unsignalized intersection are expected to operate at LOS "C" or better during both peak-hours through 2040.

CONCLUSIONS AND RECOMMENDATIONS

Trip Generation

1. The site is projected to generate about 13,785 vehicle-trips on the average weekday, with about half entering and half exiting during a 24-hour period. During the morning peakhour, about 256 vehicles would enter and about 780 vehicles would exit the site. During the afternoon peak-hour, about 857 vehicles would enter and about 505 vehicles would exit.

Projected Levels of Service

- 2. All of the signalized intersections in the study area are expected to operate at acceptable levels of service during both morning and afternoon peak-hours through 2040 with the recommended lane geometry and traffic control.
- 3. All movements at the unsignalized intersections in the study are are expected to operate at acceptable levels of service during both morning and afternoon peak-hours through 2040 with the recommended lane geometry and traffic control.

Conclusions

4. The impact of the growth in background traffic and the impact of the Parkdale residential development can be accommodated by the existing and proposed roadway network with the recommended improvements shown in Figures 8b, 8c, and 9b.

Recommendations

5. Figures 8b and 8c show the recommended improvements for 2025.

- 6. Figure 9b shows the recommended improvements for 2040.
- 7. The proposed three-quarter movement site access to N. 119th Street could be converted to full movement if the property to the south develops as commercial or other high tripgenerating land use and results in a signal warrant being met.

* * * * *

We trust this information will assist you in planning for the proposed Parkdale residential development.

Respectfully s	submitted,
LSC Transpor	tation Consultants, Inc.
By: Christoph Principal	ner S. McGranahan, P.E., PTOE
CSM/wc	4-17-20
Enclosure:	Tables 1 and 2 Figures 1 - 9b Traffic Count Reports Level of Service Definitions

Level of Service Reports

 $W: \label{eq:list} W: \label{eq:list} W: \label{eq:list} USC \label{eq:list} USC \label{eq:list} W: \label{eq:list} USC \label{eq:list} W: \label{eq:list} USC \label{eq:list} USC \label{eq:list} W: \label{eq:list} USC \label{eq:list} W: \label{eq:list} USC \label{eq:list} USC \label{eq:list} USC \label{eq:list} USC \label{eq:list} W: \label{eq:list} USC \label{eq:list} W: \label{eq:list} USC \label{eq:lis$

Table 1 (Page 1 of 4) Intersection Levels of Service Analysis Parkdale Phases 1 - 4 Erie, CO LSC #160131; April, 2020

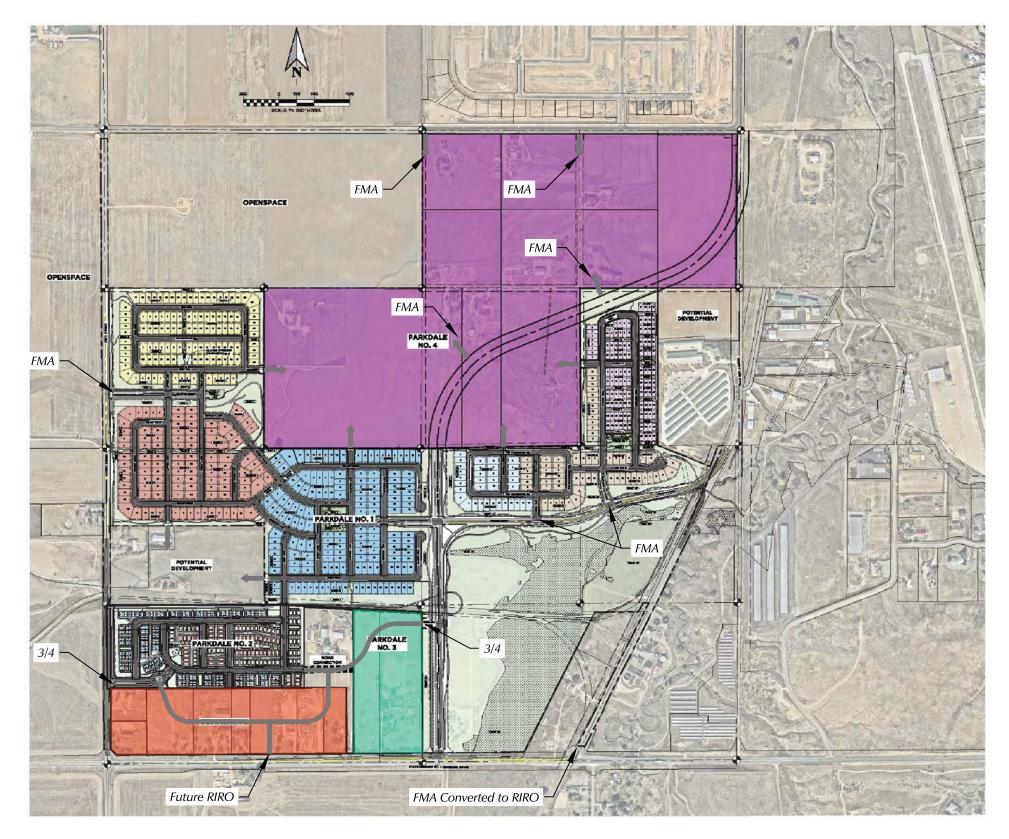
		Existing	g Traffic	20 Backgrou	25 nd Traffic		25 Traffic		40 Ind Traffic	20 Total	40 Traffic
		Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of
Internation No. and Location	Traffic	Service	Service	Service	Service	Service	Service	Service	Service	Service	Service
Intersection No. and Location	Control	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
1) Arapahoe Road/N. 119th Street	Signalized										
EB Left	5	В	В	В	В	В	В	С	С	В	С
EB Through/Right		В	D	В	D	В	Е				
EB Through								С	D	С	D
EB Right								А	А	А	А
WB Left		С	E	В	В	В	С	С	С	С	С
WB Through/Right		D	С	D	С	D	С				
WB Through								D	С	D	С
WB Right								А	A	А	A
NB Left		В	В	С	С	D	D	В	А	В	А
NB Through/Right		В	В	С	D	С	Е				
NB Through								В	А	В	А
NB Right								А	А	А	А
SB Left		С	С	В	В	В	С	В	В	В	В
SB Through		С	С	С	С	С	С	С	С	С	С
SB Right		А	А	А	А	А	А	А	А	В	А
Entire Intersection Delay (sec /veh)		26.7	29.5	29.6	34.8	31.2	46.6	24.0	18.9	24.3	19.7
Entire Intersection LOS		С	С	С	С	С	D	С	В	С	В
2) Arapahoe Road/West Site Access	TWSC										
NB Left						С	С			С	С
NB Right						A	В			A	В
WB Left						A	A			A	A
Critical Movement Delay (sec./veh)						18.7	20.2			15.2	22.2
3) Arapahoe Road/East Site Access	TWSC										
NB Left	10/30					С	С			С	С
NB Leit NB Right						A	В			A	B
WB Left						A	A			A	A
Critical Movement Delay (sec./veh)						19.0	20.5			A 15.4	22.8
Childar Movement Delay (sec./ven)						19.0	20.5			15.4	22.0
4) Arapahoe Road/County Line Road	Signalized										
EB Left	5	С	С	D	С	D	D	С	D	С	D
EB Through/Right		Ā	Ā	В	Ā	B	Ā	Ă	C	Ā	c
WB Left/Through/Right		В	В	D	D	D	D	D	D	D	D
NB Left		А	В	А	А	А	А	А	А	А	А
NB Through/Right		А	В	А	А	А	В	А	А	А	А
SB Left								А	В	А	В
SB Left/Through		А	В	В	В	В	В				
SB Through								А	В	А	В
SB Right		А	А	А	Α	А	А	А	А	А	А
Entire Intersection Delay (sec /veh)		6.3	15.5	7.7	14.4	9.9	16.1	6.1	19.3	7.4	17.8
Entire Intersection LOS		A	В	А	В	A	В	A	В	А	В

Table 1 (Page 2 of 4) Intersection Levels of Service Analysis Parkdale Phases 1 - 4 Erie, CO LSC #160131; April, 2020

					25	20			40		40
			g Traffic	ŭ	nd Traffic	Total		U	Ind Traffic		Traffic
	Traffic	Level of Service									
Intersection Location	Control	AM	PM								
	0011101	/		7		,		7		,	
5) Intentionally Left Blank											
6) Coal Creek Boulevard/Phase 4 North Access	TWSC										
EB Left						A	A			A	A
SB Left						С	С			С	D
SB Right						В	В			В	В
Critical Movement Delay (sec./veh)						17.5	20.5			21.5	26.4
7) Coal Creek Boulevard/Phase 4 South Access	TWSC										
NB Left						А	А			Α	А
EB Left						С	С			С	D
EB Right						В	В			В	В
Critical Movement Delay (sec./veh)						19.1	23.3			23.6	30.3
8) E. County Line Road/Coal Creek Boulevard/Main Site Access											
EB Left						С	D	D	D	D	D
EB Through						A	А	А	А	D	D
EB Right						А	А	А	А	А	А
WBLeft						D	D	D	D	D	D
WB Through/Right						А	А	А	А	А	А
NB Left						А	А	А	А	А	А
NB Through						А	А	А	А	А	А
NB Right						А	А	А	А	Α	А
SB Left						А	А	А	А	Α	А
SB Through						А	А	А	А	В	В
SB Right						А	А	А	А	Α	A
Entire Intersection Delay (sec /veh)						9.5	8.6	3.5	3.6	10.0	8.9
Entire Intersection LOS						А	А	А	Α	Α	А
9) <u>Coal Creek Boulevard/Three-Quarter Site Access</u>	TWSC										
NB Left	Three-					А	А	А	А	А	А
EB Right	Quarter					В	В	A	A	В	В
Critical Movement Delay (sec./veh)	Quartor					12.7	11.3	9.4	9.8	11.3	11.1
10) N. 119th Street/Full Movement Site Access	Signalized					-	-	-	-	_	-
WB Left						D	D	D	D	D	D
WB Right						A	A	С	С	В	В
NB Through						A	A	A	A	A	A
NB Right						A	A	A	A	A	A
SB Left						A	A	A	A	A	A
SB Through						A	A	A	A	A	A
Entire Intersection Delay (sec /veh)						8.1	4.9	1.0	0.6	5.8	3.4
Entire Intersection LOS						A	A	A	A	A	A

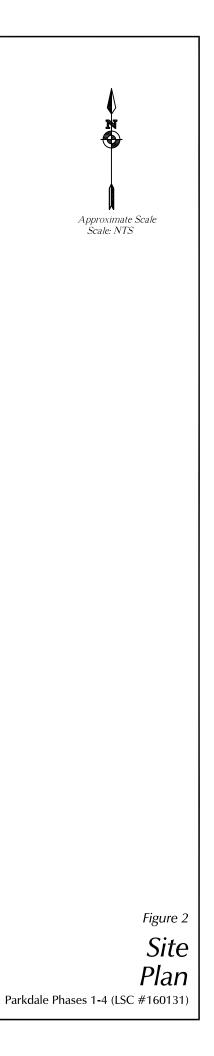
Table 1 (Page 3 of 4) Intersection Levels of Service Analysis Parkdale Phases 1 - 4 Erie, CO LSC #160131; April, 2020

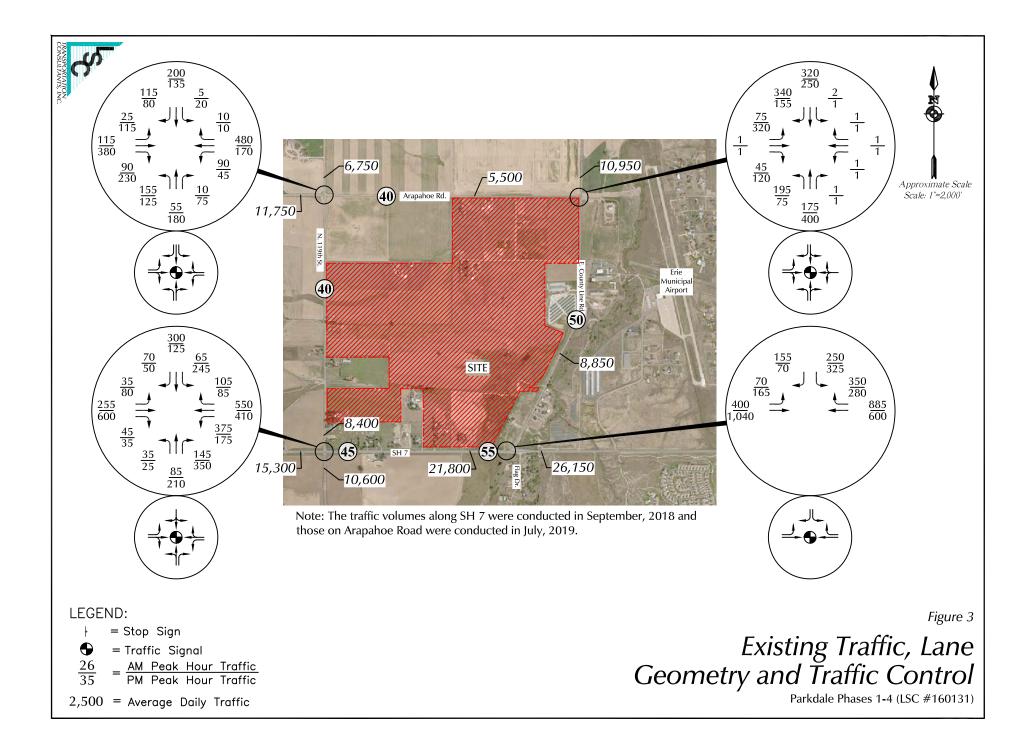
		Existing	a Traffic)25 und Traffic	20 Total			40 Ind Traffic		40 Traffic
		Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of
	Traffic	Service	Service	Service	Service	Service	Service	Service	Service	Service	Service
Intersection Location	Control	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
11) Old County Line Road/West Site Access											
EB Left						А	А			А	А
SB Approach						A	A			A	Â
Critical Movement Delay (sec./veh)						8.9	8.9			8.9	8.8
						0.0	0.0			0.0	0.0
12) Old County Line Road/East Site Access	TWSC										
EB Left						A	A			A	Α
SB Left						A	A			A	Α
SB Right						A	A			A	Α
Critical Movement Delay (sec./veh)						9.1	9.8			9.1	9.7
13) N. 119th Street/Three-Quarter Movement Site Access	TWSC										
WB Right	Three-					А	В	А	А	А	В
SB Left	Quarter					A	A	A	A	A	Ā
Critical Movement Delay (sec./veh)	Quarter					9.5	11.0	8.9	9.6	9.1	10.2
14) SH 7 (Baseline Road)/N. 119th Street	Signalized										
EB Left		В	В	В	В	В	В	D	D	D	D
EB Through/Right		D	E	В	D	С	E				
EB Through								С	С	С	С
EB Right								A	A	A	Α
WB Left		D	E	D	D	D	D	D	D	D	D
WB Through/Right		F	D								
WB Through				D	D	D	D	В	D	В	D
WB Right				А	Α	Α	В	А	Α	А	В
NB Left/Through		E	F								
NB Left				С	С	С	С	D	D	D	D
NB Through				D	D	D	Е	С	D	С	D
NB Right		А	С	А	А	А	А	A	А	A	А
SB Left/Through/Right		F	F								
SB Left				С	D	С	D	D	D	D	D
SB Through				D	C	D	Č	C	Č	C	c
SB Right				A	A	A	A	Ă	A	A	Ă
Entire Intersection Delay (sec /veh)		72.1	66.2	29.7	30.1	35.4	41.7	25.7	28.2	26.0	30.2
Entire Intersection LOS		E	60.2 E	29.7 C	50.1 C	55.4 D	41.7 D	23.7 C	20.2 C	20.0 C	50.2 C

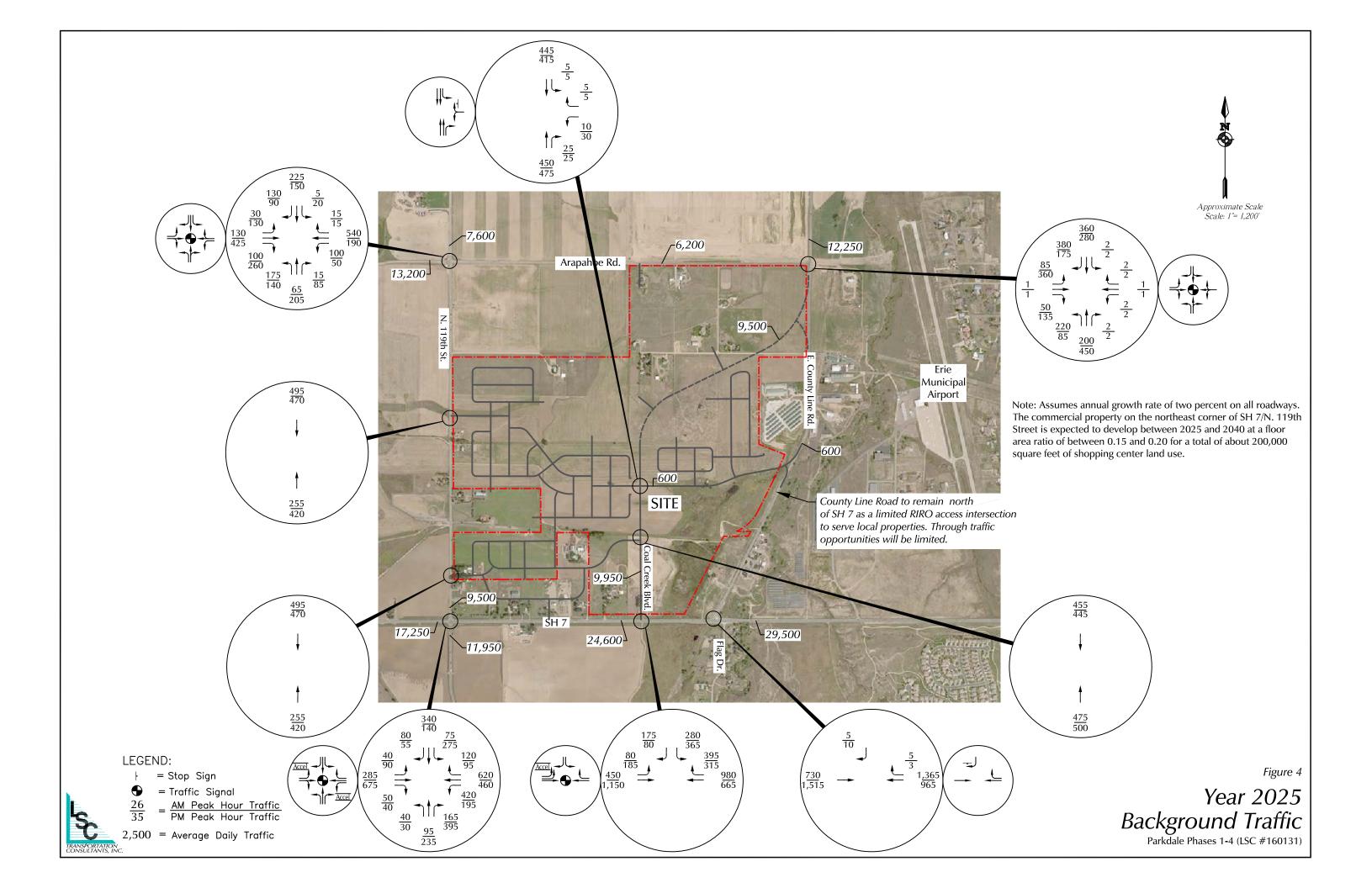

Table 1 (Page 4 of 4) Intersection Levels of Service Analysis Parkdale Phases 1 - 4 Erie, CO LSC #160131; April, 2020

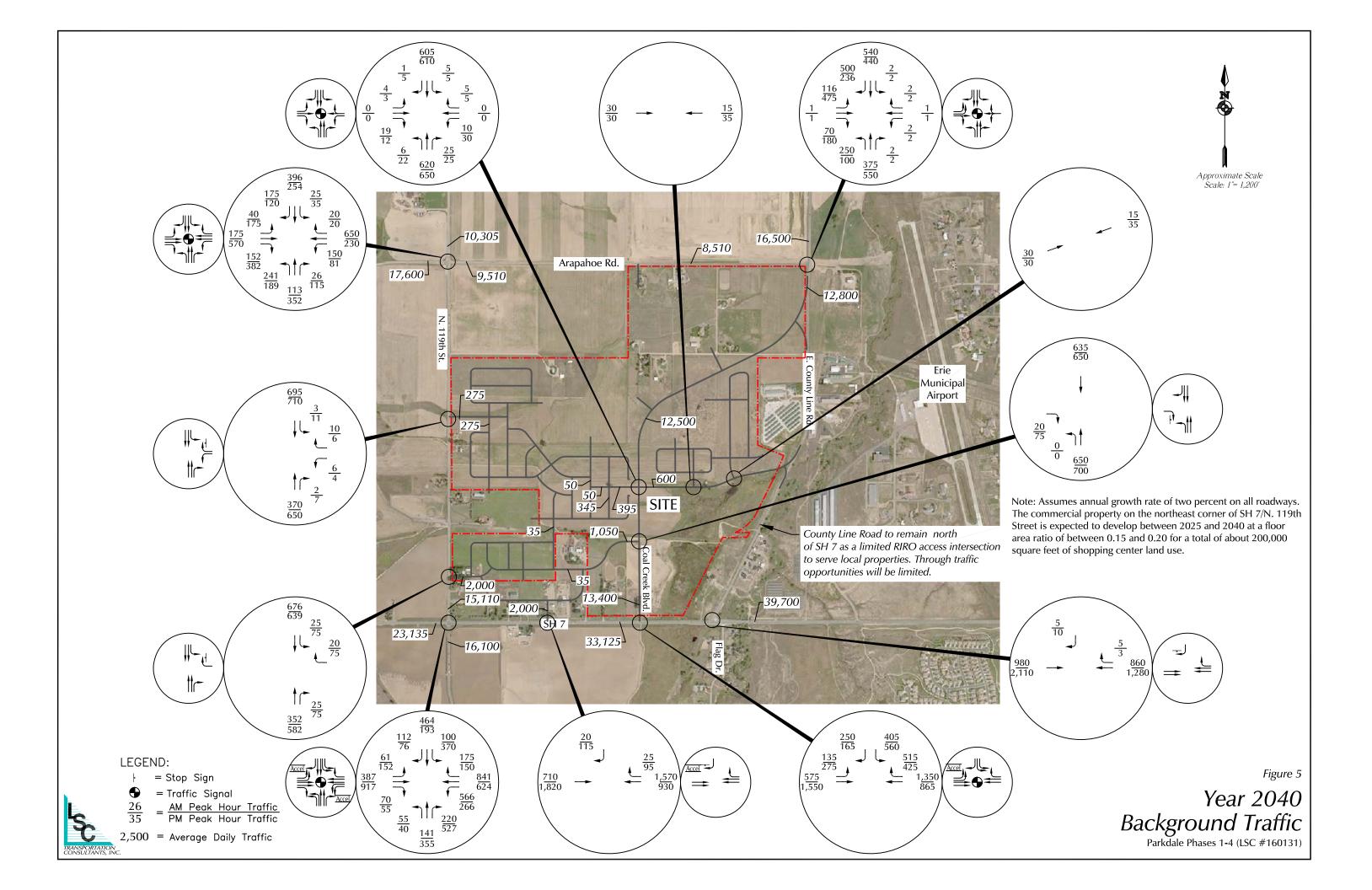
			g Traffic	Backgrou	025 Ind Traffic	Total	25 Traffic	Backgrou	040 Ind Traffic	Total	40 Traffic
	T	Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of	Level of
Internetical continu	Traffic	Service	Service	Service	Service	Service AM	Service PM	Service	Service	Service AM	Service
Intersection Location	Control	AM	PM	AM	PM	AIVI	PIM	AM	PM	AM	PM
15) SH 7 (Baseline Road)/Coal Creek Boulevard	Signalized										
EB Left				D	D	D	D	D	D	D	D
EB Through				A	В	A	С	A	С	A	С
WB Through				С	В	D	С	В	В	В	С
WB Right				A	A	A	A	A	A	A	A
SB Left				D	D	D	D	D	D	D	D
SB Right				A	A	A	A	A	A	A	A
Entire Intersection Delay (sec /veh)				16.5	20.1	24.2	23.7	15.4	21.6	19.3	24.6
Entire Intersection LOS				В	С	С	С	В	С	В	С
16) SH 7 (Baseline Road)/County Line Road	TWSC										
SB Right	RIRO			D	С	D	D	С	В	С	С
Critical Movement Delay (sec./veh)				29.4	18.6	32.4	25.2	19.8	14.3	20.7	16.4
	Signalized										
EB Left	-	А	А								
EB Through		А	В								
WB Through		С	В								
WB Right		А	А								
SB Left		E	F								
SB Right		В	В								
Entire Intersection Delay (sec /veh)		21.1	25.4								
Entire Intersection LOS		С	С								
17) SH 7 (Baseline Road)/Future Commercial RIRO	TWSC										
SB Right								В	В	С	В
Critical Movement Delay (sec./veh)								13.7	11.1	15.3	11.9

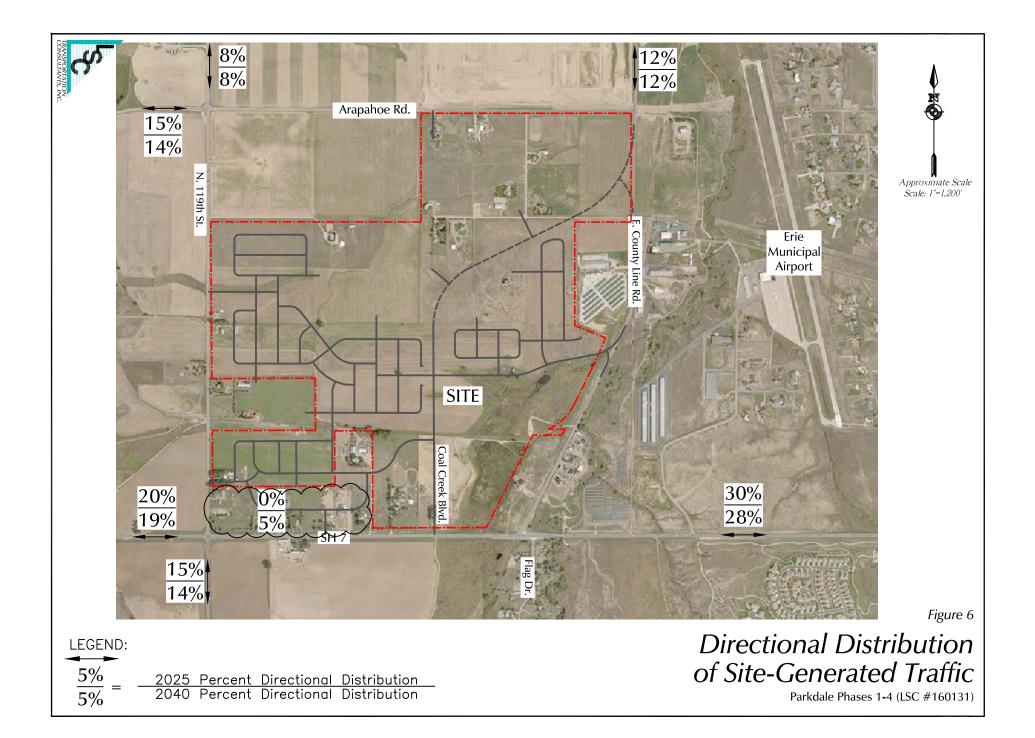
			Parkdal E	e Phas Erie, CC	es 1 - 4	-					
	Trip		Trip Gene	eration R	ates ⁽¹⁾			Total Trip	os Genera	ated	
	Generation	Average	AM Pea	k-Hour	k-Hour	Average	AM Peak		PM Peak-	-Hour	
and Use Description	Units	Weekday	In	Out	In	Out	Weekday	In	Out	In	Οι
Multifamily Housing ⁽²⁾	400 DU ⁽³⁾	7.32	0.106	0.354	0.353	0.207	2,928	42	142	140	8
Single-Family Detached ⁽⁴⁾	1,150 DU	9.44	0.185	0.555	0.624	0.366	10,856	214	638	717	42
						Total	13,785	256	780	857	50

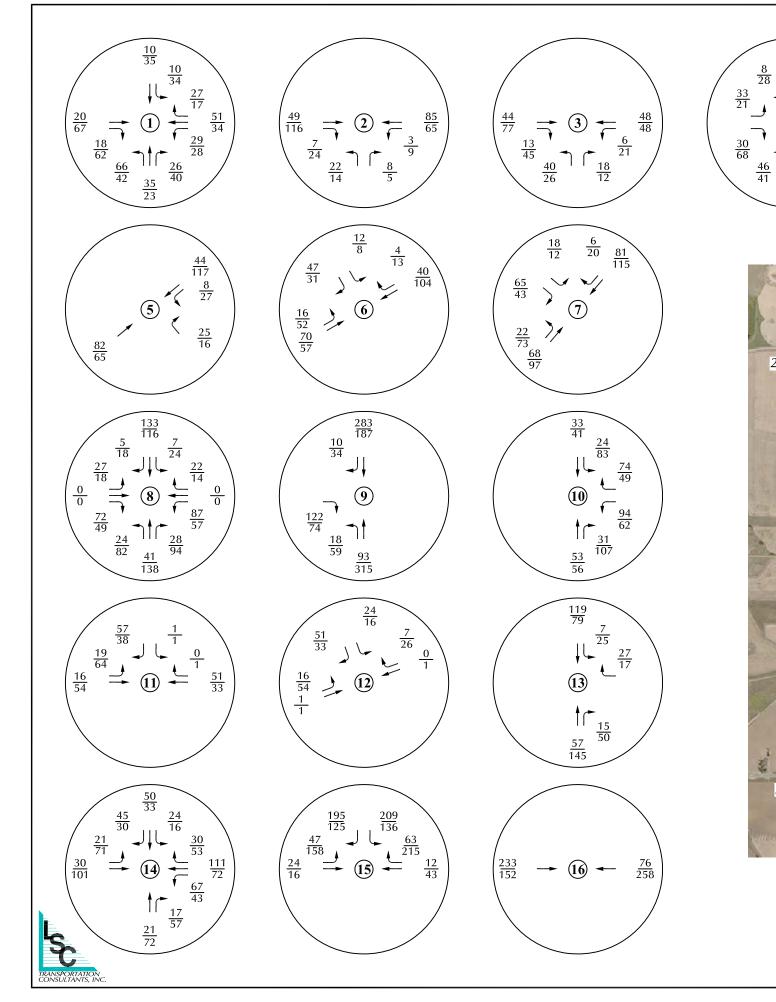

(3) DU = Dwelling Unit(4) ITE Land Use No. 210 - Single-Family Detached Housing

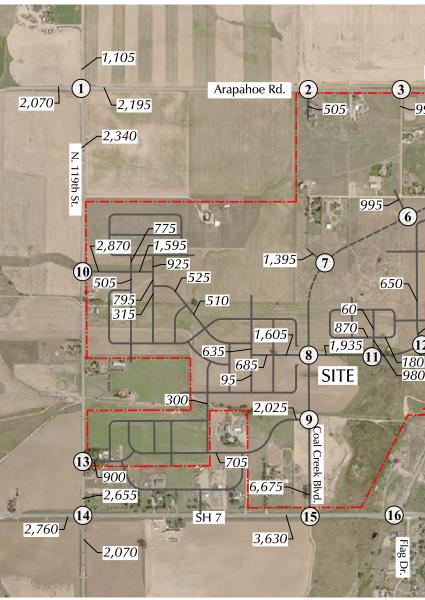


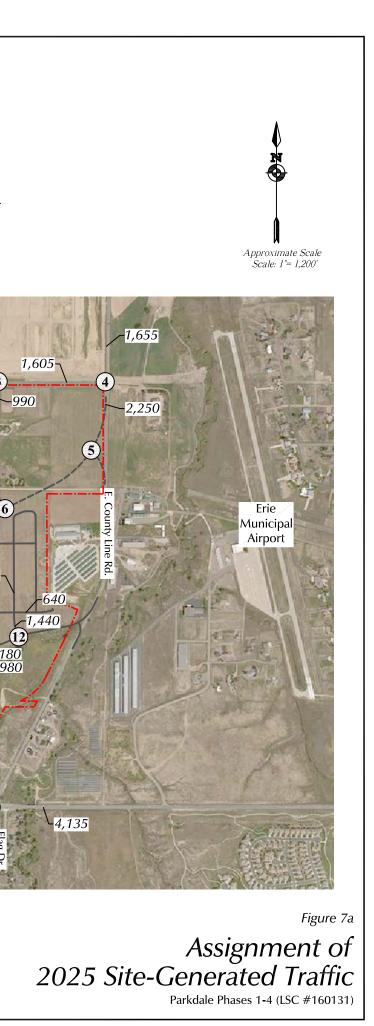


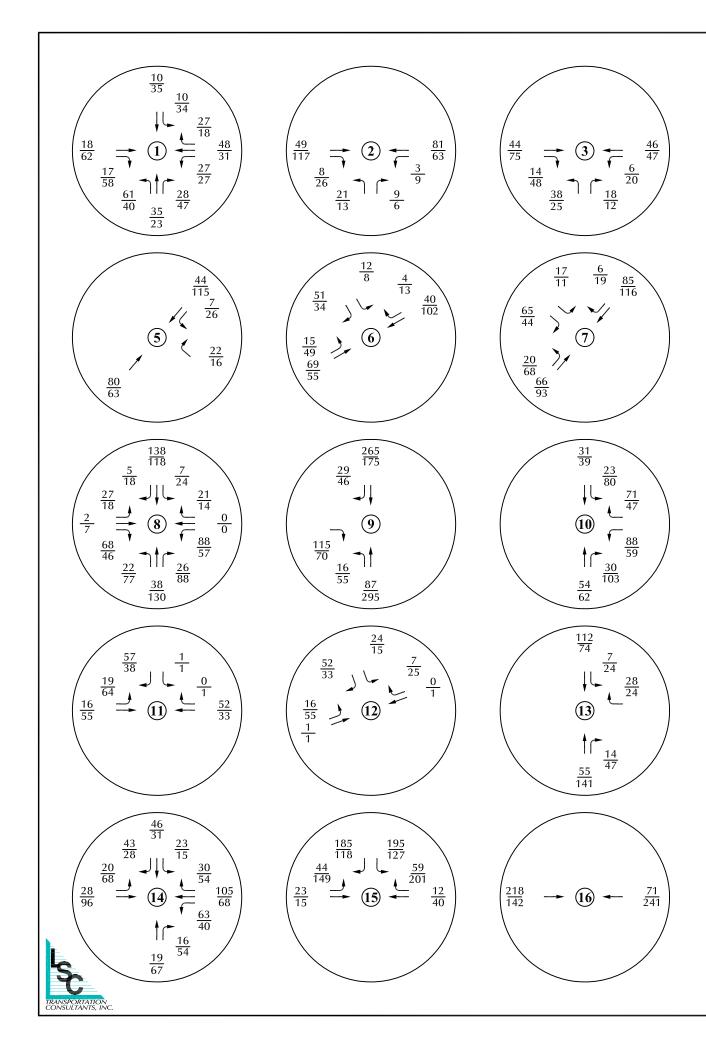

Note: Commercial area is not included in the Parkdale Phases 1-4 site.

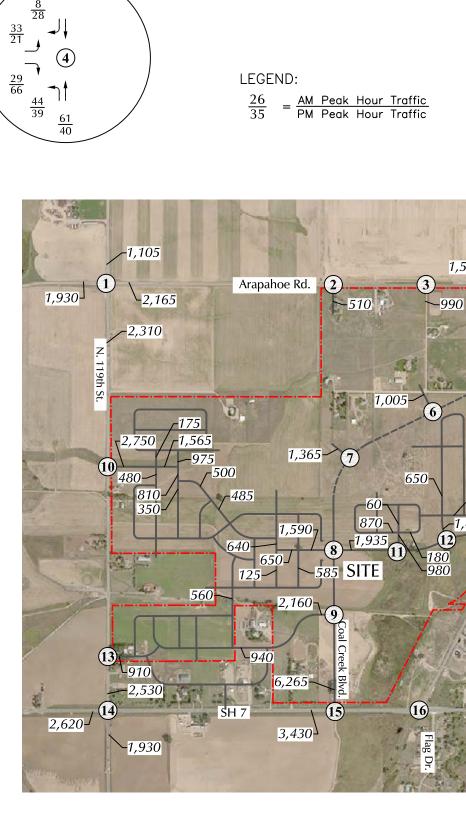




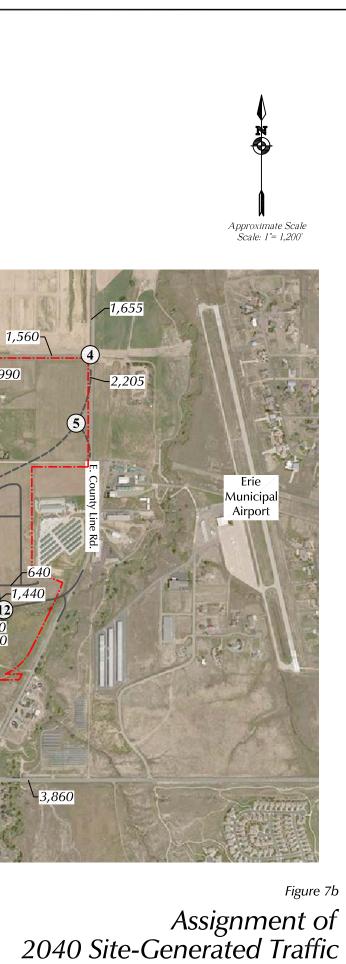


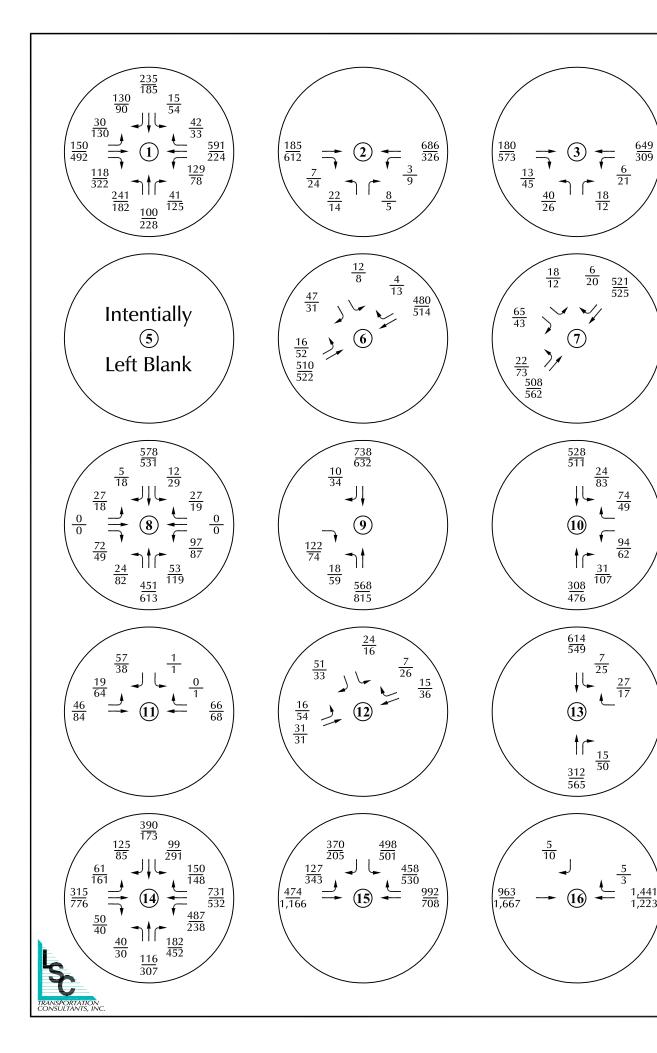

LEGEND: $\frac{26}{35} = \frac{AM \text{ Peak Hour Traffic}}{PM \text{ Peak Hour Traffic}}$

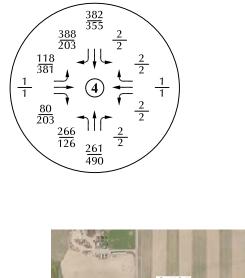



 $\frac{22}{75}$

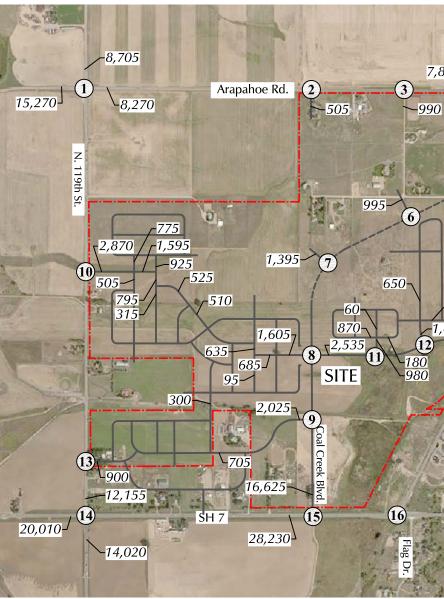
4


 $\frac{61}{40}$

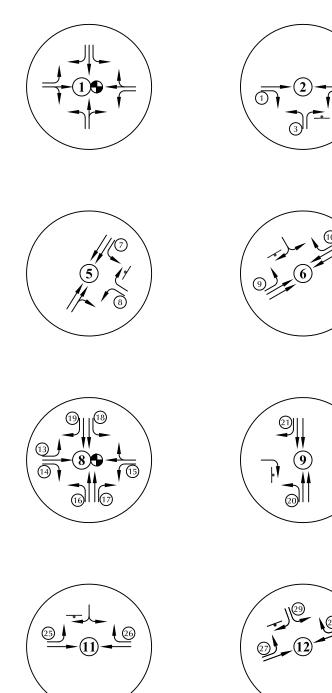




 $\frac{22}{75}$

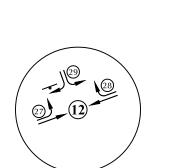


Parkdale Phases 1-4 (LSC #160131)



LEGEND: $\frac{26}{35} = \frac{AM Peak Hour Traffic}{PM Peak Hour Traffic}$

Year 2025 Total Traffic Parkdale Phases 1-4 (LSC #160131)

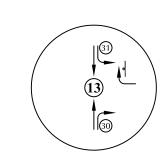


<u>6</u>

0

34

Accel



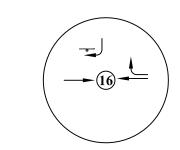
LÌ

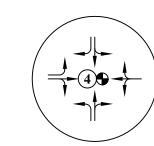
(2)

3

1

-3-

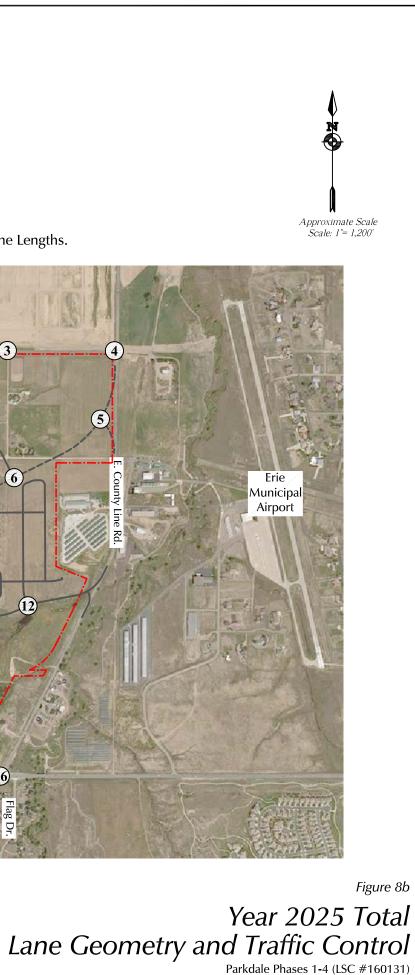

(4)


12)

(7)

2

109



LEGEND: = Stop Sign Traffic Signal

See Figure 8c for Detail on Turn Lane Lengths.

(1) EB RT = 225 feet + 145-foot transition taper WB LT = 235 feet + 145-foot transition taper ③ NB LT = 100 feet + 100-foot transition taper (4) EB RT = 225 feet + 145-foot transition taper (5) WB LT = 245 feet + 145-foot transition taper (6) NB LT = 100 feet + 100-foot transition taper (7) SB LT = 325 feet + 160-foot transition taper (8) WB LT = 200 feet + 120-foot transition taper (9) EB LT = 325 feet + 160-foot transition taper 1 WB LT = 275 feet + 160-foot transition taper (1) NB LT = 350 feet + 160-foot transition taper ① SB RT = 275 feet + 160-foot transition taper (13) EB LT = 230 feet + 120-foot transition taper (14) EB RT = 200 feet + 120-foot transition taper (15) WB LT = 290 feet + 120-foot transition taper (1) (16) NB LT = 375 feet + 160-foot transition taper (17) NB RT = 275 feet + 160-foot transition taper (18) SB LT = 305 feet + 160-foot transition taper (19) SB RT = 275 feet + 160-foot transition taper (20) NB LT = 335 feet + 160-foot transition taper (1) SB RT = 275 feet + 160-foot transition taper 2 NB RT = 225 feet + 145-foot transition taper (3) SB LT = 325 feet + 145-foot transition taper (4) WB LT = 200 feet + 120-foot transition taper (25) EB LT = 255 feet + 120-foot transition taper (2) (26) WB RT = 190 feet + 120-foot transition taper (3) D EB LT = 245 feet + 120-foot transition taper (4) WB RT = 190 feet + 120-foot transition taper (5)

- ③ SB LT = 100 feet + 100-foot transition taper
- 30 NB RT = 225 feet + 145-foot transition taper
- ③ SB LT = 325 feet 145-foot transition taper
- ③ NB LT = 280 feet + 145-foot transition taper
- (3) NB to EB Accel Lane = 390 feet + 160-foot transition taper
- (34) WB RT = 275 feet + 160-foot transition taper
- 35 SB LT = 515 feet + 145-foot transition taper
- 36 SB RT = 225 feet + 145-foot transition taper
- ③ SB to WB Accel Lane = 390 feet + 160-foot transition taper
- 38 EB LT = 2 @ 215 feet (storage) + 380 feet (decel) + 220-foot transition taper
- 39 WB RT = 380 feet + 220-foot transition taper
- SB LT = 345 feet + 160 feet transition taper (second SB LT will be easternmost through lane)
- (4) SB to WB Accel Lane = 740 feet + 220-foot transition taper

Deceleration Length *

- 35 mph = 190 feet + 120-foot transition taper
- 40 mph = 225 feet + 145-foot transition taper
- 45 mph = 275 feet + 160-foot transition taper
- 50 mph = 320 feet + 180-foot transition taper
- 55 mph = 380 feet + 220-foot transition taper
- * Left-turn deceleration lanes also have a vehicle storage requirement.

The following turn lane lengths will be needed if these lanes are built prior to the completion of Coal Creek Boulevard between SH 7 and Arapahoe Road

(1) 600 feet + 160-foot transition taper

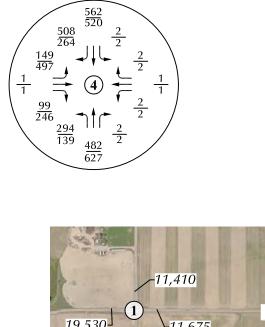
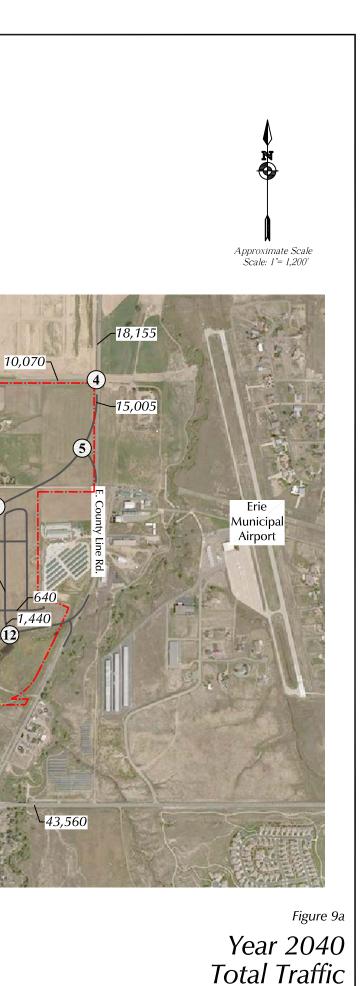
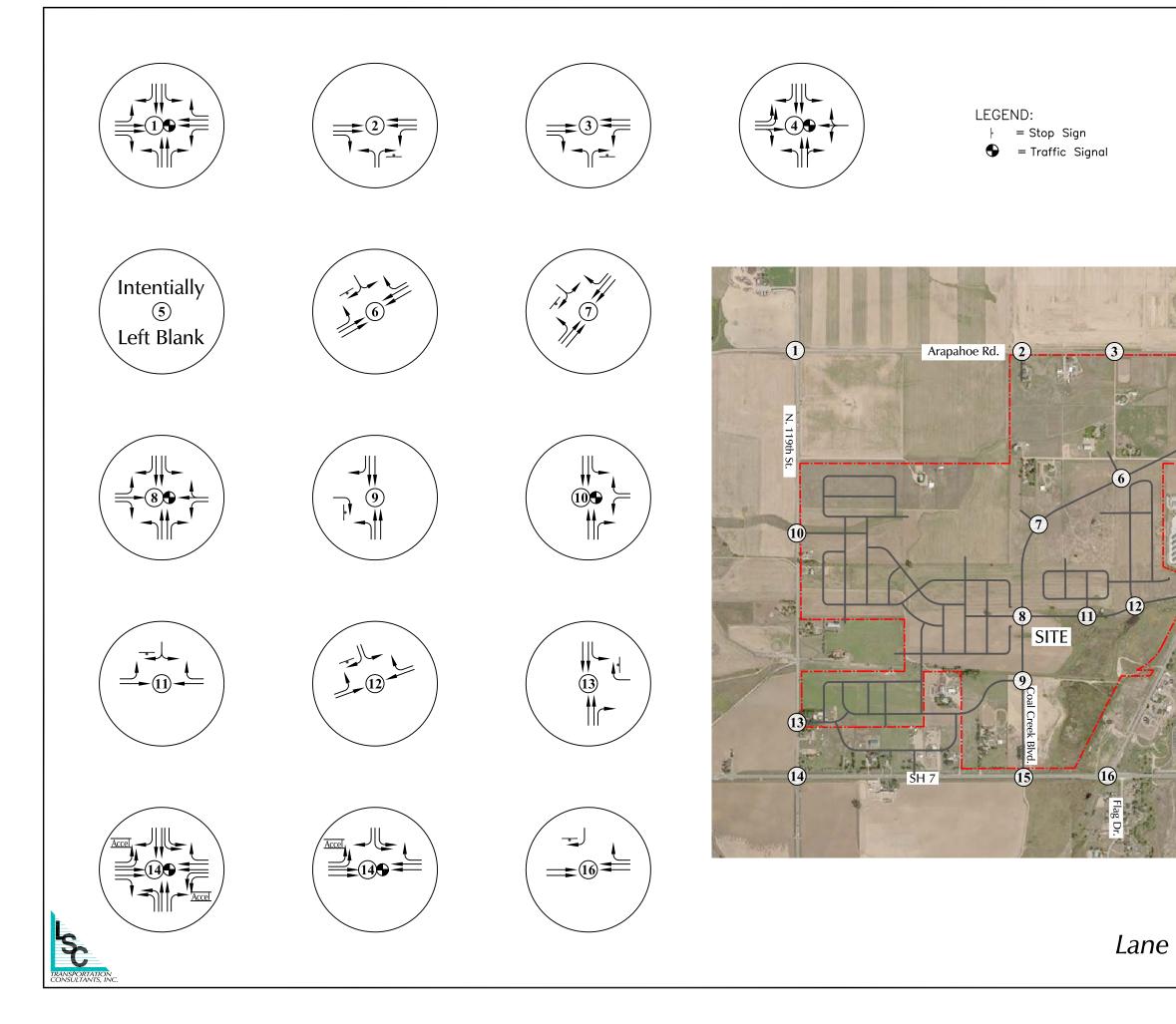
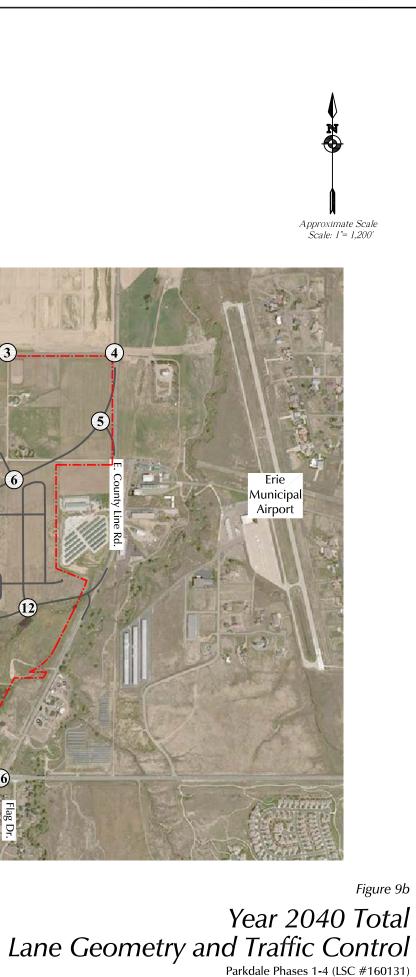

- (2) Access will be right-in/right-out in the interim so EB LT is not needed
- (3) 275 feet + 160-foot transition taper
- (4) 355 feet + 160-foot transition taper
- (5) 275 feet + 160-foot transition taper

Figure 8c

Year 2025 Total Turn Lane Details


Parkdale Phases 1-4 (LSC #160131)




LEGEND: $\frac{26}{35} = \frac{AM Peak Hour Traffic}{PM Peak Hour Traffic}$

Parkdale Phases 1-4 (LSC #160131)

COUNTER MEASURES INC.

N/S STREET: 119TH ST E/W STREET: ARAPAHOE RD CITY: ERIE COUNTY: BOULDER

1889 YORK STREET DENVER.COLORADO 303-333-7409

 File Name
 : 119TH ST ARAPAHOE RD

 Site Code
 : 00000022

 Start Date
 : 8/7/2019

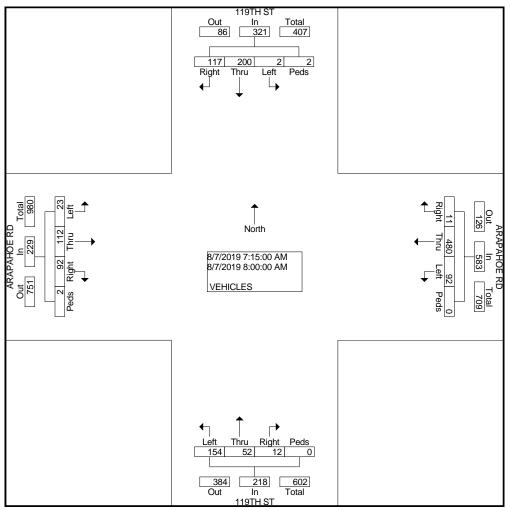
 Page No
 : 1

COUNTY: BOU	LDER					_							Page r	NO :1			
								Printed-	VEHIC								
		119T	-		A	ARAPAH	-)		119T	-		A		HOE RE)	
		South	bound			West	bound			North	bound			Eastb	pound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	1	24	18	0	9	54	1	0	52	14	0	0	3	12	8	2	198
06:45 AM	0	37	22	0	16	73	5	0	37	12	2	0	4	14	30	0	252
Total	1	61	40	0	25	127	6	0	89	26	2	0	7	26	38	2	450
												'					
07:00 AM	0	26	22	0	16	113	3	0	45	7	4	0	5	18	33	0	292
07:15 AM	1	50	27	0	14	111	3	0	41	14	2	0	6	26	22	0	317
07:30 AM	1	49	37	2	30	134	2	0	33	9	3	0	3	35	27	0	365
07:45 AM	0	56	31	0	32	108	3	0	41	15	2	0	9	31	24	1	353
Total	2	181	117	2	92	466	11	0	160	45	11	0	23	110	106	1	1327
				'				-				- 1				1	
08:00 AM	0	45	22	0	16	127	3	0	39	14	5	0	5	20	19	1	316
08:15 AM	3	41	21	0	19	101	3	1	27	13	6	0	3	28	28	0	294
	-			• 1			•	- 1			-	- 1	-			- 1	
Total	3	86	43	0	35	228	6	1	66	27	11	0	8	48	47	1	610
	-		-	- 1		-	-	1				- 1	-	-		1	
04:00 PM	3	28	15	0	6	37	1	0	19	44	8	0	14	82	54	0	311
04:15 PM	6	27	15	0	10	34	2	0	34	42	16	0	25	85	62	0	358
04:30 PM	9	32	24	0	10	47	3	0	27	44	19	1	22	92	61	0	391
04:45 PM	2	40	17	1	15	43	3	0	27	34	17	0	17	88	67	0	371
Total	20	127	71	1	41	161	9	0	107	164	60	1	78	347	244	0	1431
																1	
05:00 PM	2	30	22	0	6	43	3	0	27	52	19	0	39	98	46	1	388
05:15 PM	5	33	16	0	13	37	1	0	44	51	20	2	34	102	56	0	414
05:30 PM	1	22	16	0	7	41	1	0	32	62	21	0	37	99	51	0	390
05:45 PM	2	28	12	0	8	45	2	0	29	41	17	0	27	87	42	0	340
Total	10	113	66	0	34	166	7	0	132	206	77	2	137	386	195	1	1532
	-	-		- 1	-			-	-			1	-			1	
Grand Total	36	568	337	3	227	1148	39	1	554	468	161	3	253	917	630	5	5350
Apprch %	3.8	60.2	35.7	0.3	16.0	81.1	2.8	0.1	46.7	39.5	13.6	0.3	14.0	50.8	34.9	0.3	
Total %	0.7	10.6	6.3	0.1	4.2	21.5	0.7	0.0	10.4	8.7	3.0	0.1	4.7	17.1	11.8	0.1	
	••••		0.0	.		5	0.1	0.0		0.1	0.0	0.7				.	

COUNTER MEASURES INC.

N/S STREET: 119TH ST E/W STREET: ARAPAHOE RD CITY: ERIE COUNTY: BOULDER

1889 YORK STREET DENVER.COLORADO 303-333-7409


 File Name
 : 119TH ST ARAPAHOE RD

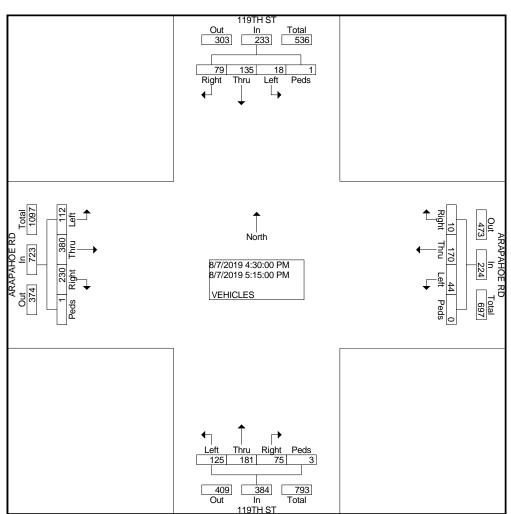
 Site Code
 : 00000022

 Start Date
 : 8/7/2019

 Page No
 : 2

			19TH outhbo	-				PAHO estbou					19TH : orthboi	-				PAHO			
Start	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	Int.
Time		u	ht	S	Total		u	ht	S	Total		u	ht	S	Total		u	ht	S	Total	Total
Peak Hour F	-rom C	6:30	AM to	08:30 A	AM - Pe	eak 1 d	of 1				I.										
Intersecti on	07:15	5 AM																			
Volume	2	200	117	2	321	92	480	11	0	583	154	52	12	0	218	23	112	92	2	229	1351
Percent	0.6	62. 3	36. 4	0.6		15. 8	82. 3	1.9	0.0		70. 6	23. 9	5.5	0.0		10. 0	48. 9	40. 2	0.9		
07:30 Volume	1	49	37	2	89	30	134	2	0	166	33	9	3	0	45	3	35	27	0	65	365
Peak Factor																					0.925
High Int.	07:30	D AM				07:30) AM				07:45	AM				07:30) AM				
Volume Peak Factor	1	49	37	2	89 0.90 2	30	134	2	0	166 0.87 8	41	15	2	0	58 0.94 0	3	35	27	0	65 0.88 1	
						I					1										
		Г								119TH											
									Out 86	In 32		otal 407									

303-333-7409


N/S STREET: 119TH ST E/W STREET: ARAPAHOE RD CITY: ERIE COUNTY: BOULDER
 File Name
 : 119TH ST ARAPAHOE RD

 Site Code
 : 00000022

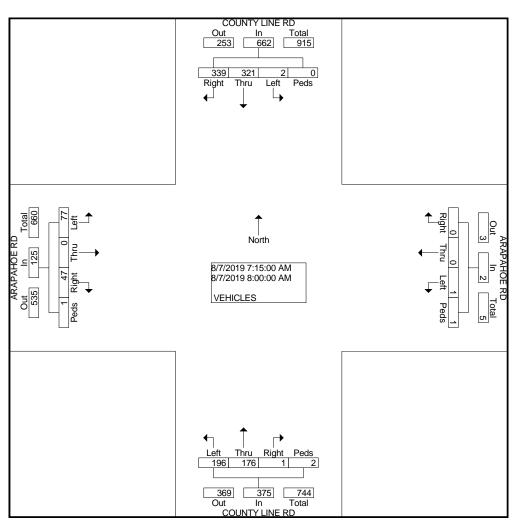
 Start Date
 : 8/7/2019

 Page No
 : 2

						r															
		1	19TH	ST			ARA	PAHC	E RD			11	19TH	ST			ARA	PAHC	DE RD		
		So	outhbo	und			W	estbo	und			No	orthbo	und			E	astbou	und		
Start	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	1.044	Thr	Rig	Ped	App.	Int.
Time	Len	u	ht	s	Total	Len	u	ht	s	Total	Len	u	ht	s	Total	Left	u	ht	s	Total	Total
Peak Hour F	rom 0	4:00 F	PM to	05:45	PM - Pe	eak 1 d	of 1												I		
Intersecti on	04:30) PM																			
Volume	18	135	79	1	233	44	170	10	0	224	125	181	75	3	384	112	380	230	1	723	1564
Percent	7.7	57. 9	33. 9	0.4		19. 6	75. 9	4.5	0.0		32. 6	47. 1	19. 5	0.8		15. 5	52. 6	31. 8	0.1		
05:15 Volume Peak	5	33	16	0	54	13	37	1	0	51	44	51	20	2	117	34	102	56	0	192	414 0.944
Factor																					0.01
	04:30) PM				04:45	5 PM				05:15	5 PM				05:15	5 PM				
Volume	9	32	24	0	65	15	43	3	0	61	44	51	20	2	117	34	102	56	0	192	
Peak Factor					0.89 6					0.91 8					0.82 1					0.94 1	

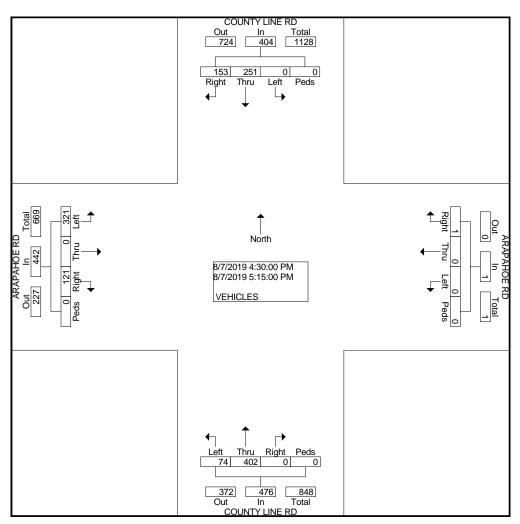
COUNTER MEASURES INC.

N/S STREET: COUNTY LINE RD E/W STREET: ARAPAHOE RD CITY: ERIE COUNTY: BOULDER


1889 YORK STREET DENVER.COLORADO 303-333-7409

File Name: COUNTARAPSite Code: 00000020Start Date: 8/7/2019Page No: 1

COUNTY: BOU	LDER													F	age No	:1	
			<u> </u>	_				Printed-									
	C	DUNTY		2D	A	RAPA)	C		LINE R	D	A	ARAPA			
		South	oound			West	ound			North	bound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	0	57	40	0	0	0	0	0	29	33	0	0	6	2	9	0	176
06:45 AM	0	60	50	2	0	0	0	0	40	48	0	0	10	0	9	0	219
Total	0	117	90	2	0	0	0	0	69	81	0	0	16	2	18	0	395
07:00 AM	0	90	71	0	0	0	0	0	58	49	0	0	7	0	18	0	293
07:15 AM	1	84	76	0	Ő	Ő	0	Ő	50	48	0	0	13	Ő	13	0	285
07:30 AM	1	90	98	0	0	Ő	0	Ő	53	53	0	0	28	Ő	15	0	338
07:45 AM	O	84	79	õ	1	Õ	Ő	1	43	40	1	2	20	Õ	.0	1	281
Total	2	348	324	0	1	0	0	1	204	190	1	2	68	0	55	1	1197
08:00 AM	0	63	86	0	0	0	0	0	50	35	0	0	16	0	10	0	260
08:00 AM	0	60	63	0	0	0	1	0	47	48	1	0	22	0	9	0	200
06.15 AM	0	00	03	0	0	0	I	0	47	40	1	0	22	0	9	0	201
Total	0	123	149	0	0	0	1	0	97	83	1	0	38	0	19	0	511
							0			70	•		50		07		
04:00 PM	0	91	32	0	0	0	0	0	14	78	0	0	58	3	27	0	303
04:15 PM	1	66	31	1	0	0	1	0	13	109	0	0	63	0	32	0	317
04:30 PM 04:45 PM	0	57 54	40 47	0	0	0 0	1	0 0	21 12	88 103	0 0	0 0	69 86	0	33 22	0	309 324
Total	0	268	150	0	0	0	0	0	60	378	0	0	276	0	114	0	1253
rotar	•	200	100	•	0	Ū	2	0	00	0/0	Ŭ	0	210	Ũ	114	0	1200
05:00 PM	0	70	33	0	0	0	0	0	18	101	0	0	88	0	31	0	341
05:15 PM	0	70	33	0	0	0	0	0	23	110	0	0	78	0	35	0	349
05:30 PM	0	57	33	0	0	0	0	0	19	115	0	0	90	0	31	0	345
05:45 PM	0	61	37	0	0	0	0	0	12	90	0	1	75	4	21	0	301
Total	0	258	136	0	0	0	0	0	72	416	0	1	331	4	118	0	1336
Grand Total	3	1114	849	3	1	0	3	1	502	1148	2	3	729	9	324	1	4692
Apprch %	0.2	56.6	43.1	0.2	20.0	0.0	60.0	20.0	30.3	69.4	0.1	0.2	68.6	0.8	30.5	0.1	
Total %	0.1	23.7	18.1	0.1	0.0	0.0	0.1	0.0	10.7	24.5	0.0	0.1	15.5	0.2	6.9	0.0	
				1				1									


N/S STREET: COUNTY LINE RD E/W STREET: ARAPAHOE RD CITY: ERIE COUNTY: BOULDER File Name: COUNTARAPSite Code: 00000020Start Date: 8/7/2019Page No: 2

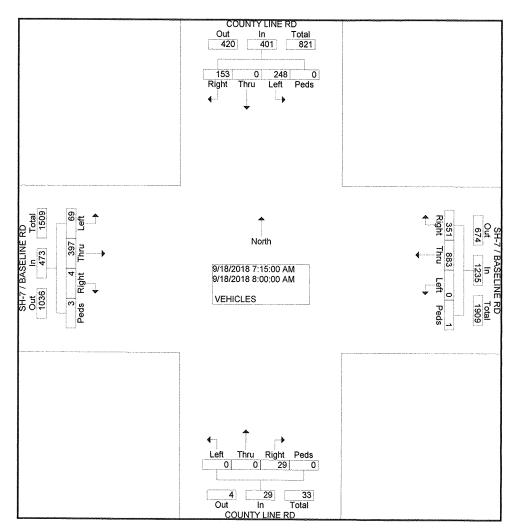
		COU	NTY LI	NE RE)		ERD			COUN	ITY LI	NE RE)		ARA	PAHC	E RD				
		Sc	outhbo	und			W	estbou	und			No	orthbou	und			Ea	astbou	Ind		
Start	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	Int.
Time	Leit	u	ht	s	Total	Leit	u	ht	s	Total	Leit	u	ht	s	Total	Leit	u	ht	s	Total	Total
Peak Hour F	From C)7:15 A	AM to (00:80	AM - Pe	eak 1 c	f 1														
Intersecti on	07:15	5 AM																			
Volume	2	321	339	0	662	1	0	0	1	2	196	176	1	2	375	77	0	47	1	125	1164
Percent	0.3	48. 5	51. 2	0.0		50. 0	0.0	0.0	50. 0		52. 3	46. 9	0.3	0.5		61. 6	0.0	37. 6	0.8		
07:30 Volume Peak	1	90	98	0	189	0	0	0	0	0	53	53	0	0	106	28	0	15	0	43	338 0.861
Factor																					
High Int.	07:30) AM				07:45	AM				07:30	AM (07:30) AM				
Volume	1	90	98	0	189	1	0	0	1	2	53	53	0	0	106	28	0	15	0	43	
Peak					0.87					0.25					0.88					0.72	
Factor					6					0					4					7	

N/S STREET: COUNTY LINE RD E/W STREET: ARAPAHOE RD CITY: ERIE COUNTY: BOULDER File Name: COUNTARAPSite Code: 00000020Start Date: 8/7/2019Page No: 2

				NE RE)			РАНО						NE RE)			PAHC			
		Sc	outhbo	und			W	estbou	und			No	orthbo	und			Ea	astbou	ind		
Start	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Ped	App.	Int.
Time	Leit	u	ht	s	Total	Len	u	ht	s	Total	Len	u	ht	s	Total	Leit	u	ht	s	Total	Total
Peak Hour I	From C	4:30 F	PM to (05:15 I	PM - Pe	eak 1 c	of 1														
Intersecti on	04:30) PM																			
Volume	0	251	153	0	404	0	0	1	0	1	74	402	0	0	476	321	0	121	0	442	1323
Percent	0.0	62. 1	37. 9	0.0		0.0	0.0	100 .0	0.0		15. 5	84. 5	0.0	0.0		72. 6	0.0	27. 4	0.0		
05:15 Volume Peak	0	70	33	0	103	0	0	0	0	0	23	110	0	0	133	78	0	35	0	113	349 0.948
Factor																					0.010
High Int.	05:00	PM				04:30	ΡM				05:15	5 PM				05:00	PM				
Volume	0	70	33	0	103	0	0	1	0	1	23	110	0	0	133	88	0	31	0	119	
Peak Factor					0.98 1					0.25 0					0.89 5					0.92 9	
i actor					1	I				0	I				5					9	

N/S STREET: COUNTY LINE RD E/W STREET: SH-7 / BASELINE RD CITY: LOUISVILLE COUNTY: BOULDER

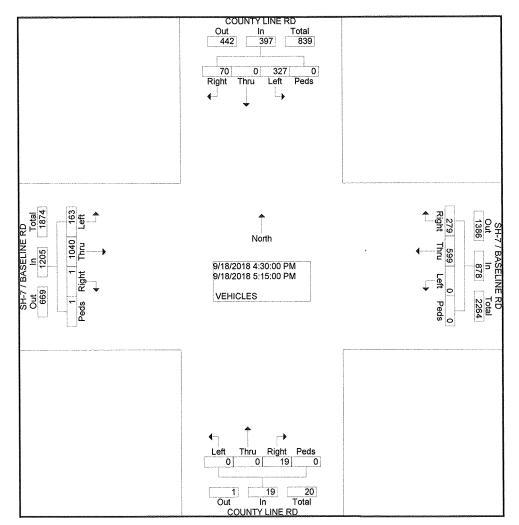
File Name: COUNSH7Site Code: 00000011Start Date: 9/18/2018Page No: 1


						(Proune I	Printed-	VEUIO	EQ					Faye	NO . 1	
	C	OUNTY South	LINE R bound	D	SH		SELINE				LINE R	D	SH	-7 / BAS Easth		RD	
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	rotar
06:30 AM	32	0	31	0	0	215	57	0	0	0	3	0	13	81	1	0	433
06:45 AM	43	0	30	0	0	228	58	1	0	0	4	0	19	89	Ó	ō	472
Total	75	0	61	0	0	443	115	1	0	0	7	0	32	170	1	0	905
07:00 AM	40	0	26	0	0	221	103	0	0	0	2	0	10	89	0	0	491
07:15 AM	52	0	39	0	0	272	98	1	0	0	2	0	11	75	2	1	553
07:30 AM	73	0	51	0	0	218	84	0	0	0	13	0	13	86	2	Ó	540
07:45 AM	70	0	36	0	0	196	72	0	0	0	7	0	20	125	0	0	526
Total	235	0	152	0	0	907	357	1	0	0	24	0	54	375	4	1	2110
08:00 AM	53	0	27	0	0	197	97	0	0	0	7	0	25	111	0	2	519
08:15 AM	47	0	30	1	0	152	86	1	0	0	2	0	21	103	Ō	1	444
Total	100	0	57	1	0	349	183	1	0	0	9	0	46	214	0	3	963
04:00 PM	68	0	17	0	0	122	52	0	0	0	3	0	43	225	0	1	531
04:15 PM	66	Ő	23	õ	ō	239	56	Ő	ŏ	ŏ	1	ő	49	223	1	o	663
04:30 PM	77	0	5	0	0	181	55	ŏ	õ	õ	11	ŏ	42	274	1	0	646
04:45 PM	82	0	23	0	0	130	72	0	Ō	Õ	3	õ	37	270	o	ŏ	617
Total	293	0	68	0	0	672	235	0	0	0	18	0	171	997	2	1	2457
05:00 PM	85	0	22	0	0	113	73	0	0	0	3	0	47	230	0	1	574
05:15 PM	83	0	20	0	0	175	79	0	0	0	2	0	37	266	Ō	Ó	662
05:30 PM	62	0	15	0	0	153	66	0	0	0	12	0	47	248	0	0	603
05:45 PM	71	0	21	0	0	133	57	0	0	0	4	0	54	235	0	0	575
Total	301	0	78	0	0	574	275	0	0	0	21	0	185	979	0	1	2414
Grand Total	1004	0	416	1	0	2945	1165	3	0	0	79	0	488	2735	7	6	8849
Apprch %	70.7	0.0	29.3	0.1	0.0	71.6	28.3	0.1	0.0	0.0	100.0	0.0	15.1	84.5	0.2	0.2	
Total %	11.3	0.0	4.7	0.0	0.0	33.3	13.2	0.0	0.0	0.0	0.9	0.0	5.5	30.9	0.1	0.1	
												:					

N/S STREET: COUNTY LINE RD E/W STREET: SH-7 / BASELINE RD CITY: LOUISVILLE COUNTY: BOULDER

COUNTER MEASURES INC. 1889 YORK STREET DENVER.COLORADO 303-333-7409

File Name: COUNSH7Site Code: 00000011Start Date: 9/18/2018Page No: 2


			TY Li uthbo	NE RI und	C	SH-7 / BASELINE RD Westbound					COUNTY LINE RD Northbound					S					
Start Time	Left	Thr u	Rig ht	Ped s	App. Total	Left	Thr u	Rig ht	Ped s	App. Total	Left	Thr u	Rig ht	Ped s	App. Total	Left	Thr u	Rig ht	Ped s	App. Total	Int. Total
Peak Hour F	From 0	7:15 A	AM to	08:00	AM - Pe	eak 1 d	of 1				1					L		• • • • • • • • • • • • • • • • • • •	k		
Intersecti on	07:15	5 AM																			
Volume	248	0	153	0	401	0	883	351	1	1235	0	0	29	0	29	69	397	4	3	473	2138
Percent	61. 8	0.0	38. 2	0.0		0.0	71. 5	28. 4	0.1		0.0	0.0	100 .0	0.0		14. 6	83. 9	0.8	0.6		
07:15 Volume	52	0	39	0	91	0	272	98	1	371	0	0	2	0	2	11	75	2	1	89	553
Peak Factor																					0.967
High Int.	07:30 AM		07:15	5 AM				07:30	07:30 AM					07:45 AM							
Volume Peak Factor	73	0	51	0	124 0.80 8	0	272	98	1	371 0.83 2	0	0	13	0	13 0.55 8	20	125	0	0	145 0.81 6	

N/S STREET: COUNTY LINE RD E/W STREET: SH-7 / BASELINE RD CITY: LOUISVILLE COUNTY: BOULDER

File Name : COUNSH7 Site Code : 00000011 Start Date : 9/18/2018 Page No : 2

	COUNTY LINE RD Southbound						SH-7 / BASELINE RD Westbound					COUNTY LINE RD Northbound					SH-7 / BASELINE RD Eastbound				
Start Time	Left	Thr u	Rig ht	Ped s	App. Total	Left	Thr u	Rig ht	Ped s	App. Total	Left	Thr u	Rig ht	Ped s	App. Total	Left	Thr u	Rig ht	Ped s	App. Total	Int. Total
Peak Hour F Intersecti on	rom 0 04:30		PM to (05:15 F	PM - Pe	eak 1 o	of 1														
Volume	327	0	70	0	397	0	599	279	0	878	0	0	19	0	19	163	104 0	1	1	1205	2499
Percent	82. 4	0.0	17. 6	0.0		0.0	68. 2	31. 8	0.0		0.0	0.0	100 .0	0.0		13. 5	86. 3	0.1	0.1		
05:15 Volume Peak Factor	83	0	20	0	103	0	175	79	0	254	0	0	2	0	2	37	266	0	0	303	662 0.944
High Int. Volume Peak Factor	05:00 85) PM 0	22	0	107 0.92 8	05:18 0	5 PM 175	79	0	254 0.86 4	04:30 0) PM 0	11	0	11 0.43 2	04:30 42		1	0	317 0.95 0	

N/S STREET: 119THST E/W STREET: SH-7 / BASELINE RD CITY: LOUISVILLE COUNTY: BOULDER

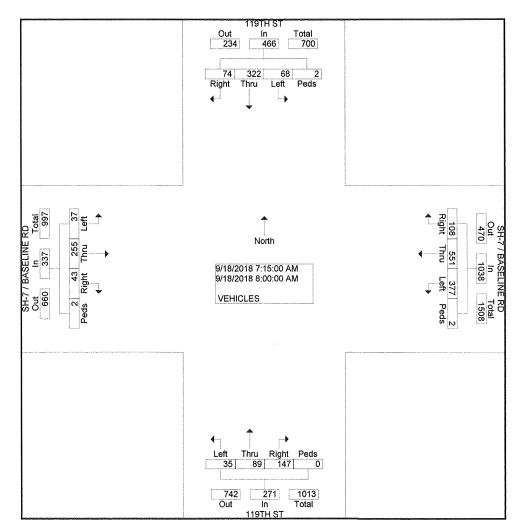
File Name : 119TSH7 Site Code : 00000017 Start Date : 9/18/2018 Page No : 1

01111.0001						(Groups I	Printed-	VEHICI	ES							
AND A TO THE REAL AND A TO T			19TH ST outhbound			SH-7 / BASELINE RD Westbound				119T Northi			SH-				
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	15	21	3	0	65	134	47	0	5	8	21	0	2	59	3	0	383
06:45 AM	21	42	5	0	72	148	38	2	4	14	36	1	3	51	3	0	440
Total	36	63	8	0	137	282	85	2	9	22	57	1	5	110	6	0	823
07:00 AM	19	47	6	0	67	140	40	0	8	13	27	0	4	53	5	1	430
07:15 AM	14	79	15	0	107	171	33	1	5	13	29	0	3	45	7	0	522
07:30 AM	12	103	19	2	112	138	19	0	8	15	25	0	10	64	9	0	536
07:45 AM	20	91	23	0	78	127	27	1	15	31	49	0	17	76	11	1	567
Total	65	320	63	2	364	576	119	2	36	72	130	0	34	238	32	2	2055
08:00 AM	22	49	17	0	80	115	29	0	7	30	44	0	7	70	16	1	487
08:15 AM	20	59	6	0	89	55	38	0	2	18	41	0	7	63	2	1	401
Total	42	108	23	0	169	170	67	0	9	48	85	0	14	133	18	2	888
04:00 PM	51	34	13	0	44	82	13	0	9	45	84	0	13	133	10	1	532
04:15 PM	60	32	5	0	50	188	24	0	5	42	93	2	15	125	14	0	65
04:30 PM	54	23	13	0	34	130	22	0	7	51	102	0	17	~ 161	8	0	622
04:45 PM	64	37	15	0	44	79	30	0	5	50	85	0	22	158	10	0	599
Total	229	126	46	0	172	479	89	0	26	188	364	2	67	577	42	1	2408
05:00 PM	62	29	15	0	54	67	14	0	7	52	82	0	23	133	3	1	542
05:15 PM	69	38	10	0	41	134	20	0	7	59	85	1	16	149	13	0	642
05:30 PM	58	34	7	0	44	100	24	0	5	58	85	0	22	152	9	0	598
05:45 PM	53	28	12	0	59	79	16	0	6	47	93	0	31	143	8	1	576
Total	242	129	44	0	198	380	74	0	25	216	345	1	92	577	33	2	235
Grand Total	614	746	184	2	1040	1887	434	4	105	546	981	4	212	1635	131	7	8532
Apprch %	39.7	48.3	11.9	0.1	30.9	56.1	12.9	0.1	6.4	33.4	60.0	0.2	10.7	82.4	6.6	0.4	
Total %	7.2	8.7	2.2	0.0	12.2	22.1	5.1	0.0	1.2	6.4	11.5	0.0	2.5	19.2	1.5	0.1	

COUNTER MEASURES INC. 1889 YORK STREET DENVER.COLORADO 303-333-7409

N/S STREET: 119THST E/W STREET: SH-7 / BASELINE RD CITY: LOUISVILLE COUNTY: BOULDER

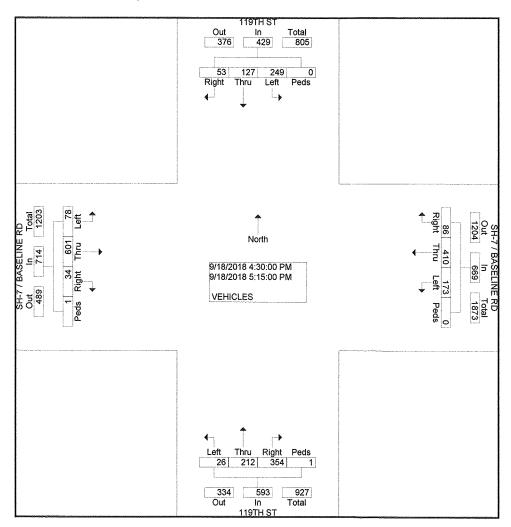
į


 File Name
 : 119TSH7

 Site Code
 : 00000017

 Start Date
 : 9/18/2018

 Page No
 : 2


			9TH uthbo			S		BASEI estboi	INE F	RD			19TH orthbol			S	H-7 / E Ea	BASE astbou		۶D	
Start Time	Left	Thr u	Rig ht	Ped s	App. Total	Left	Thr u	Rig ht	Ped s	App. Total	Left	Thr u	Rig ht	Ped s	App. Total	Left	Thr u	Rig ht	Ped s	App. Total	Int. Total
Peak Hour F	From C	7:15 A	M to (N 00:80	λM ~ Ρe	eak 1 d	of 1				from the constraints										
Intersecti on	07:15	5 AM																			
Volume	68	322	74	2	466	377	551	108	2	1038	35	89	147	0	271	37	255	43	2	337	2112
Percent	14. 6	69. 1	15. 9	0.4		36. 3	53. 1	10. 4	0.2		12. 9	32. 8	54. 2	0.0		11. 0	75. 7	12. 8	0.6		
07:45 Volume Peak	20	91	23	0	134	78	127	27	1	233	15	31	49	0	95	17	76	11	1	105	567 0.931
Factor High Int.	07:30) A M				07:15	Δ Μ				07:45					07:45	5 AM				0.831
Volume Peak Factor	12		19	2	136 0.85 7	107	171	33	1	312 0.83 2	15	31	49	0	95 0.71 3	17	76	11	1	105 0.80 2	

COUNTER MEASURES INC. 1889 YORK STREET DENVER.COLORADO 303-333-7409

N/S STREET: 119THST E/W STREET: SH-7 / BASELINE RD CITY: LOUISVILLE COUNTY: BOULDER

			19TH uthbo			S	H-7 / E W	BASE		RD			19TH orthbo			S	H-7 / E	BASE astbou		RD	
Start Time	Left	Thr u	Rig ht	Ped s	App. Total	Left	Thr u	Rig ht	Ped s	App. Total	Left	Thr		Ped s	App. Total	Left	Thr u	Rig ht	Ped s	App. Total	Int. Total
Peak Hour F	From 0	4:30 P	PM to (05:15	PM - Pe	eak 1 d	of 1				l								3		i
Intersecti on	04:30	PM																			
Volume	249	127	53	0	429	173	410	86	0	669	26	212	354	1	593	78	601	34	1	714	2405
Percent	58. 0	29. 6	12. 4	0.0		25. 9	61. 3	12. 9	0.0		4.4	35. 8	59. 7	0.2		10. 9	84. 2	4.8	0.1		
05:15 Volume Peak	69	38	10	0	117	41	134	20	0	195	7	59	85	1	152	16	149	13	0	178	642 0.937
Factor																					0.837
High Int.	05:15	PM				05:15	PM				04:30) PM				04:45	5 PM				
Volume Peak Factor	69	38	10	0	117 0.91 7	41	134	20	0	195 0.85 8	7	51	102	0	160 0.92 7	22	158	10	0	190 0.93 9	

Site ID:020968000000 Station Name: Description:COUNTY LINE RD N/O ARAPAHOE RD City:ERIE County:WELD

2/10/2016	Lane 1 (North)	Lane 2 (South)	All Lanes
00:00	16	Ş	25
01:00	10	5	
02:00	6	2	2 8
03:00	5	13	18
04:00	18	35	53
05:00	31	88	119
06:00	106	314	
07:00	206	709	915
08:00	275	476	751
09:00	193	360	553
10:00	228	318	546
11:00	261	342	603
12:00	338	310	648
13:00	322	310	632
14:00	352	306	658
15:00	513	448	961
16:00	501	392	893
17:00	623	397	1020
18:00	475	252	727
19:00	282	186	468
20:00	205	107	312
21:00	130	80	210
22:00	64	36	100
23:00	28	11	39
AM Peak Hour		07:00 - 07:59	07:00 - 07:59
AM Peak Value	275	709	915
PM Peak Hour		15:00 - 15:59	17:00 - 17:59
PM Peak Value	623	448	1020
Total	5188	5506	10694
Percentages	48.51%	51.49%	100.00%

Site ID:020953000000 Station Name: Description:ARAPAHOE RD W/O COUNTY LINE RD City:ERIE County:WELD

2/10/2016	Lane 1 (East)	Lane 2 (West)	All Lanes
00:00	10	3	13
01:00		1	······
02:00	1	2	
03:00	0	4	
04:00	2	5	7
05:00	8	40	48
06:00		181	208
07:00	75	516	591
08:00	97	401	498
09:00	111	201	312
10:00	100	163	263
11:00	152	178	330
12:00	172	146	318
13:00	168	136	304
14:00	183	151	334
15:00	205	182	387
16:00	298	183	481
17:00	339	166	505
18:00	256	95	351
19:00	121	63	184
20:00	108	44	152
21:00	64	32	96
22:00	30	9	39
23:00		3	11
	44.00		
AM Peak Hour		07:00 - 07:59	07:00 - 07:59
AM Peak Value	152	516	591
PM Peak Hour		16:00 - 16:59	17:00 - 17:59
PM Peak Value	339	183	505
Total	2540	2905	5445
Percentages	46.65%	53.35%	100.00%

Site ID:020971000000 Station Name: Description:ARAPAHOE RD W/O 119TH ST City:ERIE County:WELD

2/10/2016	Lane 1 (East)	Lane 2 (West)	All Lanes
00:00		8	1
01:00		5	5 15
02:00	6	8	3 14
03:00	1	11	12
04:00	10	32	42
05:00		156	176
06:00	83	404	487
07:00	186	779	965
08:00	207	640	847
09:00	213	367	580
10:00	223	259	482
11:00	358	316	674
12:00	359	224	583
13:00	347	225	572
14:00	440	229	669
15:00	620	318	938
16:00	718	295	1013
17:00	846	267	1113
18:00	610	208	818
19:00	318	121	439
20:00	209	95	304
21:00	146	60	206
22:00	68	36	104
23:00	35	13	48
AND	44.00 44.70		
AM Peak Hour		07:00 - 07:59	07:00 - 07:59
AM Peak Value	358	779	965
PM Peak Hour		15:00 - 15:59	17:00 - 17:59
PM Peak Value	846	318	1113
Total	6057		
Total Percentages	6057	5076	11133
reicemages	54.41%	45.59%	100.00%

Site ID:020952000000 Station Name: Description:119TH ST N/O ARAPAHOE RD City:ERIE County:WELD

2/10/2016	Lane 1 (North)	Lane 2 (South)	All Lanes
00:00			5 14
01:00	5	5	3 8
02:00	2	2	
03:00	2		3 5
04:00	0	21	and a second s
05:00	5	57	
06:00	38	156	
07:00	119	474	
08:00	125	276	1
09:00	83	180	
10:00	135	144	
11:00	133	233	
12:00	135	137	
13:00	151	130	
14:00	175	160	
15:00	286	200	486
16:00	277	226	503
17:00	399	210	609
18:00	237	128	365
19:00	149	73	222
20:00	123	33	156
21:00	74	27	101
22:00	28	18	46
23:00	13	5	18
AM Peak Hour		07:00 - 07:59	07:00 - 07:59
AM Peak Value	135	474	593
PM Peak Hour		16:00 - 16:59	17:00 - 17:59
PM Peak Value	399	226	609
Total	2703	2901	5604
Percentages	48.23%	51.77%	100.00%

Site ID:020964000000 Station Name: Description:119TH ST S/O SH-7 City:ERIE County:WELD

2/10/2016	Lane 1 (North)	Lane 2 (South)	All Lanes
00:00	13		
01:00	4	5	
02:00	17	5	
03:00	5	7	
04:00	18	39	57
05:00	43	117	160
06:00	121	412	533
07:00	277	710	987
08:00	180	490	670
09:00	185	280	465
10:00	190	241	431
11:00	247	264	511
12:00	251	257	508
13:00	259	276	535
14:00	328	289	617
15:00	546	346	892
16:00	526	290	816
17:00	598	296	894
18:00	318	183	501
19:00	187	142	329
20:00	158	69	227
21:00	100	72	172
22:00	35	38	73
23:00	18		35
A86 D	07.00 07.50		
AM Peak Hour		07:00 - 07:59	07:00 - 07:59
AM Peak Value	277	710	987
PM Peak Hour		15:00 - 15:59	17:00 - 17:59
PM Peak Value	598	346	894
Total	4604	40.40	
Percentages	4624 48.81%	4849	9473
reitentages	48.81%	51.19%	100.00%

Site ID:020957000000 Station Name: Description:119TH ST N/O SH-7 City:ERIE County:WELD

2/10/2016	Lane 1 (North)	Lane 2 (South)	All Lanes
00:00	5	10	15
01:00	4	6	5 10
02:00	5	4	
03:00	8	2	
04:00	20	19	
05:00	104	43	
06:00	199	140	
07:00	298	464	
08:00	218	278	
09:00	158	190	
10:00	158	150	
11:00	147	166	
12:00	160	157	
13:00	181	175	
14:00	200	233	
15:00	297	346	
16:00	261	341	602
17:00	304	371	675
18:00	193	179	372
19:00	102	100	202
20:00	99	56	155
21:00	53	57	110
22:00	26		58
23:00	14	23	37
AM Peak Hour	07:00 - 07:59	07:00 - 07:59	07:00 - 07:59
AM Peak Value	298	464	762
PM Peak Hour	17:00 - 17:59	17:00 - 17:59	17:00 - 17:59
PM Peak Value	304	371	675
Total	3214	3542	6756
Percentages	47.57%	52.43%	100.00%

Site ID:020961000000 Station Name: Description:COUNTY LINE RD N/O SH-7 City:ERIE County:WELD

2/10/2016	Lane 1 (North)	Lane 2 (South)	All Lanes
00:00	7		
01:00	7		
02:00	5	1	***************************************
03:00	6	11	
04:00	24	25	
05:00	36	59	
06:00	174	201	And a state of the
07:00	460	401	
08:00	386	271	and a second s
09:00	169	253	
10:00	193	208	
11:00	199	264	
12:00	239	237	476
13:00	217	242	459
14:00	265	225	490
15:00	399	359	758
16:00	344	378	722
17:00	436	392	828
18:00	308	237	545
19:00	199	166	365
20:00	132	90	222
21:00	86	68	154
22:00	43	33	76
23:00	21	11	32
AM Peak Hour		07:00 - 07:59	07:00 - 07:59
AM Peak Value	460	401	861
PM Peak Hour		17:00 - 17:59	17:00 - 17:59
PM Peak Value	436	392	828
NOS -			
Total	4355	4144	8499
Percentages	51.24%	48.76%	100.00%

Site ID:020973000000 Station Name: Description:SH-7 W/O COUNTY LINE RD City:ERIE County:WELD

2/10/2016	Lane 1 (West)	Lane 2 (East)	All Lanes
00:00	20) 39	59
01:00	16	27	43
02:00	21	28	8 49
03:00	27	14	41
04:00	82	43	125
05:00	312	111	423
06:00	853	236	1089
07:00	1104	466	1570
08:00	973	454	1427
09:00	675	455	1130
10:00	618	473	1091
11:00	649	584	1233
12:00	570	589	1159
13:00	620	614	1234
14:00	581	728	1309
15:00	694	1029	1723
16:00	630	1104	1734
17:00	574	1163	1737
18:00	479	827	1306
19:00	385	457	842
20:00	221	359	580
21:00	173	272	445
22:00	91	125	216
23:00	60	61	121
AM Peak Hour		11:00 - 11:59	07:00 - 07:59
AM Peak Value	1104	584	1570
PM Peak Hour		17:00 - 17:59	17:00 - 17:59
PM Peak Value	694	1163	1737
Manhammerzzonoolaampuorm <u>enneksen avanan (Maham</u> an (Maham)			
Total	10428	10258	20686
Percentages	50.41%	49.59%	100.00%

Site ID:020972000000 Station Name: Description:SH-7 W/O 119TH ST City:ERIE County:WELD

2/10/2016	Lane 1 (West)	Lane 2 (East)	All Lanes
00:00	16	22	
01:00	10	19	
02:00	15	14	
03:00	15	7	
04:00	33	24	57
05:00	127	69	196
06:00	383	152	
07:00	Products by here as an end of the second	destate the second s	1018
08:00	629	323	952
09:00	469	317	786
10:00	438	360	798
11:00	501	447	948
12:00		453	883
13:00		442	861
14:00	417	493	910
15:00	482	632	1114
16:00		679	1188
17:00	434	670	1104
18:00	319	546	865
19:00	274	285	559
20:00	146	237	383
21:00	111	170	281
22:00	58		145
23:00		25	62
A 1 8 7			
AM Peak Hour	Construction of the second s	11:00 - 11:59	07:00 - 07:59
AM Peak Value	······································	447	1018
PM Peak Hour		16:00 - 16:59	16:00 - 16:59
PM Peak Value	509	679	1188
T - 4 - 1	0050		
Total	6952	6811	13763
Percentages	50.51%	49.49%	100.00%

Site ID:020958000000 Station Name: Description:SH-7 E/O COUNTY LINE RD City:ERIE County:WELD

2/10/2016	Lane 1 (West)	Lane 2 (East)	All Lanes
00:00		. 43	3 65
01:00	18	25	
02:00	26	26	52
03:00	29	18	3 47
04:00	88	57	145
05:00	329	139	468
06:00		325	1254
07:00		783	2250
08:00		597	1765
09:00		610	1334
10:00			1279
11:00		720	1419
12:00		707	1383
13:00	691	728	1419
14:00	710	812	1522
15:00	817	1212	2029
16:00	754	1332	2086
17:00	732	1381	2113
18:00	549	931	1480
19:00	420	498	918
20:00	276	396	672
21:00	193	297	490
22:00	114	140	254
23:00	73	58	131
AM Deele LL	07.00 07.50		
AM Peak Hour		07:00 - 07:59	07:00 - 07:59
AM Peak Value	1467	783	2250
PM Peak Hour PM Peak Value		17:00 - 17:59	17:00 - 17:59
rivi reak value		1381	2113
Total	40405	40.400	
Percentages	12195	12423	24618
rencentages	49.54%	50.46%	100.00%

LEVEL OF SERVICE DEFINITIONS

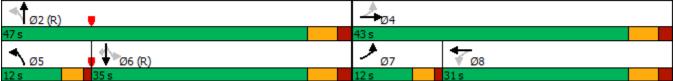
From *Highway Capacity Manual*, Transportation Research Board, 2016, 6th Edition

SIGNALIZED INTERSECTION LEVEL OF SERVICE (LOS)

LOS	<u>Average</u> <u>Vehicle Delay</u> sec/vehicle	Operational Characteristics
A	<10 seconds	Describes operations with low control delay, up to 10 sec/veh. This LOS occurs when progression is extremely favorable and most vehicles arrive during the green phase. Many vehicles do not stop at all. Short cycle lengths may tend to contribute to low delay values.
В	10 to 20 seconds	Describes operations with control delay greater than 10 seconds and up to 20 sec/veh. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.
С	20 to 35 seconds	Describes operations with control delay greater than 20 and up to 35 sec/veh. These higher delays may result from only fair progression, longer cycle length, or both. Individual cycle failures may begin to appear at this level. Cycle failure occurs when a given green phase does not serve queued vehicles, and overflows occur. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.
D	35 to 55 seconds	Describes operations with control delay greater than 35 and up to 55 sec/veh. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, and high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	55 to 80 seconds	Describes operations with control delay greater than 55 and up to 80 sec/veh. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent.
F	>80 seconds	Describes operations with control delay in excess of 80 sec/veh. This level, considered unacceptable to most drivers, often occurs with over-saturation, that is, when arrival flow rates exceed the capacity of lane groups. It may also occur at high v/c ratios with many individual cycle failures. Poor progression and long cycle lengths may also contribute significantly to high delay levels.

LEVEL OF SERVICE DEFINITIONS

From Highway Capacity Manual, Transportation Research Board, 2016, 6th Edition


UNSIGNALIZED INTERSECTION LEVEL OF SERVICE (LOS) Applicable to Two-Way Stop Control, All-Way Stop Control, and Roundabouts

LOS	Average Vehicle Control Delay	Operational Characteristics
A	<10 seconds	Normally, vehicles on the stop-controlled approach only have to wait up to 10 seconds before being able to clear the intersection. Left-turning vehicles on the uncontrolled street do not have to wait to make their turn.
В	10 to 15 seconds	Vehicles on the stop-controlled approach will experience delays before being able to clear the intersection. <u>The delay could be up to 15 seconds.</u> Left-turning vehicles on the uncontrolled street may have to wait to make their turn.
С	15 to 25 seconds	Vehicles on the stop-controlled approach can expect delays in the range of 15 to 25 seconds before clearing the intersection. Motorists may begin to take chances due to the long delays, thereby posing a safety risk to through traffic. Left-turning vehicles on the uncontrolled street will now be required to wait to make their turn causing a queue to be created in the turn lane.
D	25 to 35 seconds	This is the point at which a traffic signal may be warranted for this intersection. The delays for the stop-controlled intersection are not considered to be excessive. The length of the queue may begin to block other public and private access points.
E	35 to 50 seconds	The delays for all critical traffic movements are considered to be unacceptable. The length of the queues for the stop-controlled approaches as well as the left-turn movements are extremely long. <u>There is a high probability that this intersection will meet traffic</u> <u>signal warrants.</u> The ability to install a traffic signal is affected by the location of other existing traffic signals. Consideration may be given to restricting the accesses by eliminating the left-turn move- ments from and to the stop-controlled approach.
F	>50 seconds	The delay for the critical traffic movements are probably in excess of 100 seconds. The length of the queues are extremely long. Motorists are selecting alternative routes due to the long delays. <u>The only remedy for these long delays is installing a traffic signal</u> <u>or restricting the accesses.</u> The potential for accidents at this inter- section are extremely high due to motorist taking more risky chances. If the median permits, motorists begin making two-stage left-turns.

Timings 1: N. 119th Street & Arapahoe Road

	٦	+	4	Ļ	<	1	1	ţ	~
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	ľ	el el	1	el el	ľ	el 🕺	ľ	•	1
Traffic Volume (vph)	25	115	90	480	155	55	2	200	115
Future Volume (vph)	25	115	90	480	155	55	2	200	115
Turn Type	pm+pt	NA	Perm	NA	pm+pt	NA	Perm	NA	Perm
Protected Phases	7	4		8	5	2		6	
Permitted Phases	4		8		2		6		6
Detector Phase	7	4	8	8	5	2	6	6	6
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.5	24.0	24.0	24.0	9.5	24.0	24.0	24.0	24.0
Total Split (s)	12.0	43.0	31.0	31.0	12.0	47.0	35.0	35.0	35.0
Total Split (%)	13.3%	47.8%	34.4%	34.4%	13.3%	52.2%	38.9%	38.9%	38.9%
Yellow Time (s)	3.0	4.0	4.0	4.0	3.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	2.0	2.0	2.0	1.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	6.0	6.0	6.0	4.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead		Lag	Lag	Lead		Lag	Lag	Lag
Lead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)	36.8	34.8	30.1	30.1	45.2	43.2	30.9	30.9	30.9
Actuated g/C Ratio	0.41	0.39	0.33	0.33	0.50	0.48	0.34	0.34	0.34
v/c Ratio	0.12	0.31	0.25	0.85	0.31	0.08	0.00	0.34	0.20
Control Delay	16.3	15.4	25.5	44.2	14.5	12.0	21.0	24.5	4.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	16.3	15.4	25.5	44.2	14.5	12.0	21.0	24.5	4.5
LOS	В	В	С	D	В	В	С	C	А
Approach Delay		15.5		41.3		13.8		17.2	
Approach LOS		В		D		В		В	
Intersection Summary									
Cycle Length: 90									
Actuated Cycle Length: 90									
Offset: 0 (0%), Referenced	to phase 2	:NBTL an	d 6:SBTL	, Start of	Green				
Natural Cycle: 70									
Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 0.85									
Intersection Signal Delay: 2						n LOS: C			
Intersection Capacity Utilization	ation 65.8%	þ		10	CU Level	of Servic	еC		
Analysis Period (min) 15									

Splits and Phases: 1: N. 119th Street & Arapahoe Road

Timings 4: E. County Line Road & Arapahoe Road

	۶	-	4	+	1	Ť	1	ţ	~	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ሻ	4Î		4	ሻ	eî 👘		<u>स</u>	1	
Traffic Volume (vph)	75	1	1	1	195	175	2	320	340	
Future Volume (vph)	75	1	1	1	195	175	2	320	340	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	Perm	
Protected Phases		4		8		2		6		
Permitted Phases	4		8		2		6		6	
Detector Phase	4	4	8	8	2	2	6	6	6	
Switch Phase										
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	24.0	24.0	24.0	24.0	24.5	24.5	24.5	24.5	24.5	
Total Split (s)	30.0	30.0	30.0	30.0	35.0	35.0	35.0	35.0	35.0	
Total Split (%)	46.2%	46.2%	46.2%	46.2%	53.8%	53.8%	53.8%	53.8%	53.8%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.5	4.5	4.5	4.5	4.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
_ost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.5	6.5		6.5	6.5	
Lead/Lag										
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	Max	Max	Max	Max	Max	
Act Effct Green (s)	8.7	8.7		8.7	36.6	36.6		36.6	36.6	
Actuated g/C Ratio	0.16	0.16		0.16	0.68	0.68		0.68	0.68	
v/c Ratio	0.39	0.18		0.01	0.33	0.16		0.30	0.33	
Control Delay	24.4	7.8		15.0	7.8	5.6		6.3	1.7	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0	0.0	
Total Delay	24.4	7.8		15.0	7.8	5.6		6.3	1.7	
LOS	С	А		В	А	А		А	А	
Approach Delay		18.1		15.0		6.7		3.9		
Approach LOS		В		В		А		А		
Intersection Summary										
Cycle Length: 65										
Actuated Cycle Length: 54										
Natural Cycle: 50										
Control Type: Actuated-Unco	ordinated	1								
Maximum v/c Ratio: 0.39										
ntersection Signal Delay: 6.3				Ir	ntersectio	n LOS: A				
Intersection Capacity Utilization)		10	CU Level	of Service	eΑ			
Analysis Period (min) 15										

Splits and Phases: 4: E. County Line Road & Arapahoe Road

<↑ ø₂	<u></u> Ø4	
35 s	30 s	
↓ Ø6	√ Ø8	
35 s	30 s	

	≯	-	4	+	Ť	۲	Ŧ
Lane Group	EBL	EBT	WBL	WBT	NBT	NBR	SBT
Lane Configurations	٦	ef 👘	ሻ	eî 👘	ب ا ا	1	\$
Traffic Volume (vph)	35	255	375	550	85	145	300
Future Volume (vph)	35	255	375	550	85	145	300
Turn Type	pm+pt	NA	pm+pt	NA	NA	Perm	NA
Protected Phases	5	2	1	6	4		8
Permitted Phases	2		6			4	
Detector Phase	5	2	1	6	4	4	8
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	24.0	10.0	24.0	19.0	19.0	19.0
Total Split (s)	12.0	34.0	18.0	40.0	19.0	19.0	29.0
Total Split (%)	12.0%	34.0%	18.0%	40.0%	19.0%	19.0%	29.0%
Yellow Time (s)	3.0	4.0	3.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	6.0	5.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag	Lead	Lag			
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			
Recall Mode	Max	C-Max	Max	C-Max	None	None	None
Act Effct Green (s)	36.0	28.0	47.0	34.0	11.3	11.3	24.7
Actuated g/C Ratio	0.36	0.28	0.47	0.34	0.11	0.11	0.25
v/c Ratio	0.19	0.62	0.94	1.13	0.63	0.43	1.03
Control Delay	17.4	36.7	53.0	108.8	55.6	6.0	88.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.4	36.7	53.0	108.8	55.6	6.0	88.9
LOS	В	D	D	F	E	А	F
Approach Delay		34.7		88.5	28.5		88.9
Approach LOS		С		F	С		F
Intersection Summary							
Cycle Length: 100							
Actuated Cycle Length: 100)						
Offset: 35 (35%), Reference		2:EBTL	and 6:WE	3TL. Start	of Green		
Natural Cycle: 110				,			
Control Type: Actuated-Cod	ordinated						
Maximum v/c Ratio: 1.13							
Intersection Signal Delay: 7	2.1			Ir	ntersectio	n LOS: E	
Intersection Capacity Utiliza)			CU Level		еE
Analysis Period (min) 15							
,							

Splits and Phases: 14: N. 119th Street & State Highway 7 (Baseline Road)

√ Ø1	🖉 📥 🖉 2 (R)	◆ Ø4	↓ _{Ø8}
18 s	34 s	19 s	29 s
▶ Ø5	₩ Ø ₽ (R)		
12 s	40 s		

	٨	→	+	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	۲	†	†	1	۲	1
Traffic Volume (vph)	70	400	885	350	250	155
Future Volume (vph)	70	400	885	350	250	155
Turn Type	pm+pt	NA	NA	Perm	Prot	Prot
Protected Phases	5	2	6		4	4
Permitted Phases	2			6		
Detector Phase	5	2	6	6	4	4
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	24.0	24.0	24.0	10.0	10.0
Total Split (s)	18.0	84.0	66.0	66.0	26.0	26.0
Total Split (%)	16.4%	76.4%	60.0%	60.0%	23.6%	23.6%
Yellow Time (s)	3.0	4.0	4.0	4.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	6.0	6.0	6.0	5.0	5.0
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Max	C-Max	C-Max	None	None
Act Effct Green (s)	80.5	79.5	69.6	69.6	19.5	19.5
Actuated g/C Ratio	0.73	0.72	0.63	0.63	0.18	0.18
v/c Ratio	0.27	0.32	0.80	0.34	0.85	0.42
Control Delay	7.0	6.4	23.3	4.7	68.2	13.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	7.0	6.4	23.3	4.7	68.2	13.7
LOS	А	А	С	А	E	В
Approach Delay		6.5	18.1		47.3	
Approach LOS		А	В		D	
Intersection Summary						
Cycle Length: 110						
Actuated Cycle Length: 110	າ					
Offset: 6 (5%), Referenced		·FRTL an	d 6·WRT	Start of	Green	
Natural Cycle: 80			u u.wb1,		Oreen	
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.85	Graniatou					
Intersection Signal Delay: 2	011			b	ntersectio	n LOS: C
Intersection Capacity Utiliza						of Service
Analysis Period (min) 15	uton 11.3/0	, 		N		
Analysis Fendu (min) 10						
Onlite and Diseases 40.0	4.4.4. 1 K	7 /D				- Deed

Splits and Phases: 16: State Highway 7 (Baseline Road) & E. County Line Road

→ _{Ø2 (R)}	,	Ø4	
84 s		26 s	
	 Ø6 (R)		
18 s	66 s		

Timings 1: N. 119th Street & Arapahoe Road

	≯	-	4	+	•	1	1	ţ	~
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	۲	eî 👘	۲	eî	۲	el 🕴	<u>۲</u>	†	1
Traffic Volume (vph)	115	380	45	170	125	180	18	135	80
Future Volume (vph)	115	380	45	170	125	180	18	135	80
Turn Type	pm+pt	NA	Perm	NA	pm+pt	NA	Perm	NA	Perm
Protected Phases	7	4		8	5	2		6	
Permitted Phases	4		8		2		6		6
Detector Phase	7	4	8	8	5	2	6	6	6
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.5	24.0	24.0	24.0	9.5	24.0	24.0	24.0	24.0
Total Split (s)	12.0	43.0	31.0	31.0	12.0	47.0	35.0	35.0	35.0
Total Split (%)	13.3%	47.8%	34.4%	34.4%	13.3%	52.2%	38.9%	38.9%	38.9%
Yellow Time (s)	3.0	4.0	4.0	4.0	3.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	2.0	2.0	2.0	1.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	6.0	6.0	6.0	4.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead		Lag	Lag	Lead		Lag	Lag	Lag
Lead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)	36.9	34.9	23.2	23.2	45.1	43.1	31.5	31.5	31.5
Actuated g/C Ratio	0.41	0.39	0.26	0.26	0.50	0.48	0.35	0.35	0.35
v/c Ratio	0.27	0.92	0.57	0.40	0.22	0.31	0.05	0.22	0.13
Control Delay	17.8	44.4	56.7	29.5	14.0	14.4	21.6	23.0	1.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.8	44.4	56.7	29.5	14.0	14.4	21.6	23.0	1.8
LOS	В	D	E	С	В	В	С	С	А
Approach Delay		40.2		34.9		14.3		15.6	
Approach LOS		D		С		В		В	
Intersection Summary									
Cycle Length: 90									
Actuated Cycle Length: 90									
Offset: 0 (0%), Referenced	to phase 2	:NBTL an	d 6:SBTL	, Start of	Green				
Natural Cycle: 70									
Control Type: Actuated-Coo	ordinated								
Maximum v/c Ratio: 0.92									
Intersection Signal Delay: 2	29.5			Ir	ntersectio	n LOS: C			
Intersection Capacity Utilization	ation 76.4%)		10	CU Level	of Servic	e D		
Analysis Period (min) 15									

Splits and Phases: 1: N. 119th Street & Arapahoe Road

📲 ø2 (R) 📮		404	
47 s		43 s	
▲ ø5 • ø6 (r)		★ Ø8
12 s 35 s		12 s	31 s

Timings <u>4: E. County Line Road & Arapahoe Road</u>

Lane Group Lane Configurations Traffic Volume (vph) Future Volume (vph) Turn Type Protected Phases Permitted Phases Detector Phase	EBL 320 320 Perm 4	EBT 1 1 NA 4	WBL 1 1 Perm	WBT	NBL	NBT	SBL	SBT	SBR	
Traffic Volume (vph) Future Volume (vph) Turn Type I Protected Phases Permitted Phases	320 320 Perm 4	1 1 NA	1	1		1.				
Future Volume (vph) Turn Type I Protected Phases Permitted Phases	320 Perm 4	1 NA	1	· · · · ·	75	- P*		र्च	1	
Turn Type I Protected Phases Permitted Phases	Perm 4	NA	-	1		400	1	250	155	
Protected Phases Permitted Phases	4		Perm		75	400	1	250	155	
Permitted Phases		4		NA	Perm	NA	Perm	NA	Perm	
				8		2		6		
Detector Phase			8		2		6		6	
	4	4	8	8	2	2	6	6	6	
Switch Phase										
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	24.0	24.0	24.0	24.0	24.5	24.5	24.5	24.5	24.5	
Total Split (s)	30.0	30.0	30.0	30.0	35.0	35.0	35.0	35.0	35.0	
	16.2%	46.2%	46.2%	46.2%	53.8%	53.8%	53.8%	53.8%	53.8%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.5	4.5	4.5	4.5	4.5	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.5	6.5		6.5	6.5	
Lead/Lag										
Lead-Lag Optimize?										
Recall Mode I	None	None	None	None	Max	Max	Max	Max	Max	
Act Effct Green (s)	18.5	18.5		18.5	28.8	28.8		28.8	28.8	
Actuated g/C Ratio	0.31	0.31		0.31	0.48	0.48		0.48	0.48	
v/c Ratio	0.78	0.22		0.01	0.15	0.47		0.30	0.19	
Control Delay	31.7	4.3		12.0	11.3	13.8		11.8	2.9	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0	0.0	
Total Delay	31.7	4.3		12.0	11.3	13.8		11.8	2.9	
LOS	С	А		В	В	В		В	А	
Approach Delay		24.2		12.0		13.4		8.4		
Approach LOS		С		В		В		А		
Intersection Summary										
Cycle Length: 65										
Actuated Cycle Length: 59.8										
Natural Cycle: 50										
Control Type: Actuated-Uncoord	dinated									
Maximum v/c Ratio: 0.78										
Intersection Signal Delay: 15.5				lr	ntersectio	n LOS: B				
Intersection Capacity Utilization	74.6%			10	CU Level	of Service	D			
Analysis Period (min) 15										

Splits and Phases: 4: E. County Line Road & Arapahoe Road

↑ ø2	A 04	
35 s	30 s	
↓ ∞ø6	↓ Ø8	
35 s	30 s	

Timings	
14: N. 119th Street & State Highway 7 (Baseline Road)	

	٦	-	4	+	Ť	1	ţ
Lane Group	EBL	EBT	WBL	WBT	NBT	NBR	SBT
Lane Configurations	ኘ	¢Î,	۲	ef 👘	र्भ	1	\$
Traffic Volume (vph)	80	600	175	410	210	350	125
Future Volume (vph)	80	600	175	410	210	350	125
Turn Type	pm+pt	NA	pm+pt	NA	NA	Perm	NA
Protected Phases	5	2	1	6	8		4
Permitted Phases	2		6			8	
Detector Phase	5	2	1	6	8	8	4
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	17.0	10.0	24.0	17.0	17.0	24.0
Total Split (s)	12.0	41.0	12.0	41.0	17.0	17.0	30.0
Total Split (%)	12.0%	41.0%	12.0%	41.0%	17.0%	17.0%	30.0%
Yellow Time (s)	3.0	4.0	3.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	6.0	5.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag	Lead	Lag			
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			
Recall Mode	Max	C-Max	Max	C-Max	None	None	None
Act Effct Green (s)	43.0	35.0	43.0	35.0	11.0	11.0	24.0
Actuated g/C Ratio	0.43	0.35	0.43	0.35	0.11	0.11	0.24
v/c Ratio	0.31	1.00	0.90	0.79	1.18	0.85	0.99
Control Delay	17.5	69.0	62.9	38.8	161.4	31.8	80.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.5	69.0	62.9	38.8	161.4	31.8	80.5
LOS	В	E	E	D	F	С	F
Approach Delay		63.2		45.1	83.9		80.5
Approach LOS		E		D	F		F
Intersection Summary							
Cycle Length: 100							
Actuated Cycle Length: 100)						
Offset: 32 (32%), Reference	ed to phase	e 2:EBTL	and 6:WE	BTL, Start	of Green		
Natural Cycle: 100	·						
Control Type: Actuated-Cod	ordinated						
Maximum v/c Ratio: 1.18							
Intersection Signal Delay: 6	6.2			lr	ntersectio	n LOS: E	
Intersection Capacity Utiliza	ation 98.2%)		10	CU Level	of Service	e F
Analysis Period (min) 15							

Splits and Phases: 14: N. 119th Street & State Highway 7 (Baseline Road)

√ Ø1	Ø2 (R)	Ø4	↑ ø8
12 s	41 s	30 s	17 s
	✓ Ø6 (R)		
12 s	41 s		

	٨	→	+	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	†	†	1	ኘ	1
Traffic Volume (vph)	165	1040	600	280	325	70
Future Volume (vph)	165	1040	600	280	325	70
Turn Type	pm+pt	NA	NA	Perm	Prot	Prot
Protected Phases	5	2	6		4	4
Permitted Phases	2			6		
Detector Phase	5	2	6	6	4	4
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	23.0	24.0	24.0	24.0	23.0	23.0
Total Split (s)	15.0	84.0	69.0	69.0	26.0	26.0
Total Split (%)	13.6%	76.4%	62.7%	62.7%	23.6%	23.6%
Yellow Time (s)	3.0	4.0	4.0	4.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	6.0	6.0	6.0	5.0	5.0
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Max	C-Max	C-Max	None	None
Act Effct Green (s)	79.0	78.0	64.4	64.4	21.0	21.0
Actuated g/C Ratio	0.72	0.71	0.59	0.59	0.19	0.19
v/c Ratio	0.36	0.82	0.57	0.28	1.01	0.21
Control Delay	7.0	17.8	17.1	2.0	95.8	18.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	7.0	17.8	17.1	2.0	95.8	18.7
LOS	A	В	В	A	F	В
Approach Delay		16.4	12.3		82.1	
Approach LOS		В	В		F	
Intersection Summary						
Cycle Length: 110						
Actuated Cycle Length: 110	0					
Offset: 48 (44%), Referenc		2.ERTI	and 6.W/F	RT Start	of Green	
Natural Cycle: 80		, Z.LUIL		J, Jlail		
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 1.01	orundleu					
Intersection Signal Delay: 2	05/			h	ntersectio	n LOS: C
Intersection Capacity Utiliza						of Service
Analysis Period (min) 15	ution 01.3/0	J		N		
maiyaia renou (min) 13						

Splits and Phases: 16: State Highway 7 (Baseline Road) & E. County Line Road

→ _{Ø2 (R)}	•	▲ _{Ø4}
84 s		26 s
	● Ø6 (R)	
15 s	69 s	

Timings 1: N. 119th Street & Arapahoe Road

Lane Configurations Image: Configuratio		۶	+	4	Ļ	<	1	*	ţ	~
Traffic Volume (vph) 30 130 100 540 175 65 5 225 130 Future Volume (vph) 30 130 100 540 175 65 5 225 130 Turn Type pm+pt NA pm <pt< td=""> pddddddddddddddddddddddddddddddddddd</pt<>	Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Traffic Volume (vph) 30 130 100 540 175 65 5 225 130 Future Volume (vph) 30 130 100 540 175 65 5 225 130 Turn Type pm+pt NA pm <pt< td=""> pm<pt< td=""> pd pd pd pd</pt<></pt<>	Lane Configurations	7	el 🗍	1	eî 👘	<u> </u>	ef 🗍	۲	†	1
Turn Type pm+pt NA pm+pt	Traffic Volume (vph)			100				-		130
Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8 2 6 6 6 Detector Phase 7 4 3 8 5 2 1 6 6 Detector Phase 7 4 3 8 5 2 1 6 6 Detector Phase 7 4 3 8 5 2 1 6 6 Switch Phase 7 4 3 8 5 2 1 6 6 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 20 20.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 3.5	Future Volume (vph)	30	130	100	540	175	65	5	225	130
Permitted Phases 4 8 2 6 6 Detector Phase 7 4 3 8 5 2 1 6 6 Switch Phase 7 4 3 8 5 2 1 6 6 Switch Phase 7 4 3 8 5 2 1 6 6 Switch Phase 7 4 3 8 5 2 1 6 6 Winimum Spitt (s) 10.0 23.0 10.0 23.0 10.0 23.0 23.0 23.0 Total Spitt (s) 12.0 47.0 12.0 47.0 12.0 29.0% 12.0% 29.0% 20.0 2.0 2.0 2.0 2.0 <td>Turn Type</td> <td>pm+pt</td> <td>NA</td> <td>pm+pt</td> <td>NA</td> <td>pm+pt</td> <td>NA</td> <td>pm+pt</td> <td>NA</td> <td>Perm</td>	Turn Type	pm+pt	NA	pm+pt	NA	pm+pt	NA	pm+pt	NA	Perm
Detector Phase 7 4 3 8 5 2 1 6 6 Switch Phase	Protected Phases	7	4	3	8	5	2	1	6	
Switch Phase 5.0	Permitted Phases	4		8		2		6		6
Minimum Initial (s) 5.0 7.0<	Detector Phase	7	4	3	8	5	2	1	6	6
Minimum Split (s) 10.0 23.0 10.0 23.0 10.0 23.0 10.0 23.0 23.0 23.0 Total Split (s) 12.0% 47.0% 12.0% 47.0% 12.0% 29.0% 12.0% 29.0% 20.0% 20.0%	Switch Phase									
Total Split (s) 12.0 47.0 12.0 47.0 12.0 29.0 12.0 29.0 29.0 Total Split (%) 12.0% 47.0% 12.0% 47.0% 12.0% 29.0% 12.0% 29.0% 20.0% 20.0% 20.0% 20.0% 20.0% 20.0% 20.0%	Minimum Initial (s)		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Total Split (%) 12.0% 47.0% 12.0% 47.0% 12.0% 29.0% 12.0% 29.0% 21.5 1.5	Minimum Split (s)		23.0				23.0			
Yellow Time (s) 3.5 3.6 3.5 3.7 3.7	Total Split (s)									
All-Red Time (s) 1.5 1.7 1.6 1.7 4.7 <td>Total Split (%)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Total Split (%)									
Lost Time Adjust (s) -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 2.0 -2.0 -2.0 2.0 -2.0 2.0 -2.0 2.0 -2.0 2.0 -2.0 2.0 -2.0 2.0 -2.0 2.0 -2.0 2.0 -2.0 2.0 -2.0 2.0 -2.0 -2.0 2.0 -2.0 -2.0 2.0 -2.0 -2.0 2.0 Total Lost Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.0 Lead Lag	Yellow Time (s)									
Total Lost Time (s) 3.0 7.0 3.0 3.0 7.0 Lead/Lag Lead Lag Lag Lead Lag	All-Red Time (s)									
Lead Lag Lead Lag Lead Lag Lead Lag Lead Lag Lag <thlag< th=""> Lag Lag Lag</thlag<>	Lost Time Adjust (s)									
Lead-Lag Optimize? Yes	Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	7.0	3.0	3.0	7.0
Recall Mode None None None None C-Max None C-Max Addedity C-Max Quere D C C Max Quere O.42 0.34 0.44 0.39 0.48 0.42 0.42 0.35 0.31 V/c Ratio 0.14 0.40 0.24 0.83 0.39 0.11 0.01 0.37 0.24 Control Delay 12.5 19.8 17.4 40.4 33.9 31.5 19.2 30.0 6.8 LOS B B D C C B D C C<	Lead/Lag						3			
Act Effct Green (s) 42.4 34.0 44.2 38.8 47.6 41.8 42.5 34.7 30.7 Actuated g/C Ratio 0.42 0.34 0.44 0.39 0.48 0.42 0.42 0.35 0.31 v/c Ratio 0.14 0.40 0.24 0.83 0.39 0.11 0.01 0.37 0.24 Control Delay 12.5 19.8 17.4 40.4 33.9 31.5 19.2 30.0 6.8 Queue Delay 0.0 <td>Lead-Lag Optimize?</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td></td> <td>Yes</td> <td></td> <td></td>	Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes		
Actuated g/C Ratio 0.42 0.34 0.44 0.39 0.48 0.42 0.42 0.35 0.31 V/c Ratio 0.14 0.40 0.24 0.83 0.39 0.11 0.01 0.37 0.24 Control Delay 12.5 19.8 17.4 40.4 33.9 31.5 19.2 30.0 6.8 Queue Delay 0.0	Recall Mode		None		None	None	C-Max	None		
w/c Ratio 0.14 0.40 0.24 0.83 0.39 0.11 0.01 0.37 0.24 Control Delay 12.5 19.8 17.4 40.4 33.9 31.5 19.2 30.0 6.8 Queue Delay 0.0 <t< td=""><td>Act Effct Green (s)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Act Effct Green (s)									
Control Delay 12.5 19.8 17.4 40.4 33.9 31.5 19.2 30.0 6.8 Queue Delay 0.0	Actuated g/C Ratio		0.34		0.39					
Queue Delay 0.0 <th< td=""><td>v/c Ratio</td><td></td><td>0.40</td><td>0.24</td><td>0.83</td><td>0.39</td><td>0.11</td><td>0.01</td><td>0.37</td><td>0.24</td></th<>	v/c Ratio		0.40	0.24	0.83	0.39	0.11	0.01	0.37	0.24
Total Delay 12.5 19.8 17.4 40.4 33.9 31.5 19.2 30.0 6.8 LOS B B B D C C B C A Approach Delay 18.9 36.9 33.2 21.5 A Approach LOS B D C C C C Intersection Summary C C C C C C C Cycle Length: 100 Actuated Cycle Length: 100 C	Control Delay									
LOSBBBDCCBCAApproach Delay18.936.933.221.5Approach LOSBDCCIntersection SummaryCycle Length: 100Actuated Cycle Length: 100Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of GreenNatural Cycle: 70Control Type: Actuated-CoordinatedMaximum v/c Ratio: 0.83Intersection LOS: CIntersection Signal Delay: 29.6Intersection LOS: CIntersection Capacity Utilization 68.4%ICU Level of Service C	Queue Delay									
Approach Delay18.936.933.221.5Approach LOSBDCCIntersection SummaryCycle Length: 100Actuated Cycle Length: 100Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of GreenNatural Cycle: 70Control Type: Actuated-CoordinatedMaximum v/c Ratio: 0.83Intersection LOS: CIntersection Signal Delay: 29.6Intersection LOS: CIntersection Capacity Utilization 68.4%ICU Level of Service C	Total Delay									
Approach LOS B D C C Intersection Summary Cycle Length: 100 Actuated Cycle Length: 100 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 70 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 29.6 Intersection LOS: C Intersection Capacity Utilization 68.4% ICU Level of Service C	LOS	В		В		С		В		А
Intersection Summary Cycle Length: 100 Actuated Cycle Length: 100 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 70 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 29.6 Intersection LOS: C Intersection Capacity Utilization 68.4% ICU Level of Service C	Approach Delay									
Cycle Length: 100 Actuated Cycle Length: 100 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 70 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 29.6 Intersection LOS: C ICU Level of Service C	Approach LOS		В		D		С		С	
Actuated Cycle Length: 100 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 70 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 29.6 Intersection LOS: C IcU Level of Service C	Intersection Summary									
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 70 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 29.6 Intersection Capacity Utilization 68.4%	Cycle Length: 100									
Natural Cycle: 70 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 29.6 Intersection Capacity Utilization 68.4%	Actuated Cycle Length: 100									
Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.83 Intersection Signal Delay: 29.6 Intersection Capacity Utilization 68.4%		to phase 2	:NBTL an	d 6:SBTL	, Start of	Green				
Maximum v/c Ratio: 0.83Intersection Signal Delay: 29.6Intersection Capacity Utilization 68.4%ICU Level of Service C	Natural Cycle: 70									
Intersection Signal Delay: 29.6 Intersection LOS: C Intersection Capacity Utilization 68.4% ICU Level of Service C		ordinated								
Intersection Capacity Utilization 68.4% ICU Level of Service C	Maximum v/c Ratio: 0.83									
Analysis Period (min) 15		ntion 68.4%)		10	CU Level	of Service	еC		
	Analysis Period (min) 15									

Splits and Phases: 1: N. 119th Street & Arapahoe Road

Ø1	∎ ¶ Ø2 (R)	√ Ø3	<u></u> 04
12 s	29 s	12 s	47 s
▲ Ø5	Ø6 (R)		₩ Ø8
12 s	29 s	12 s	47 s

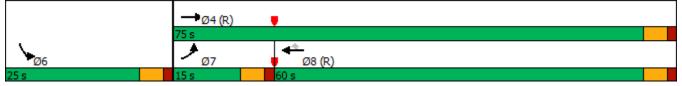
Timings			
4: Coal Creek Blvd/County	Line Road	& Ara	pahoe Road

	۶	+	4	+	•	1	*	ţ	~
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	ľ	el el		\$	ľ	el 🕺		र्च	1
Traffic Volume (vph)	85	1	2	1	220	200	2	360	380
Future Volume (vph)	85	1	2	1	220	200	2	360	380
Turn Type	pm+pt	NA	Perm	NA	pm+pt	NA	Perm	NA	Perm
Protected Phases	7	4		8	5	2		6	
Permitted Phases	4		8		2		6		6
Detector Phase	7	4	8	8	5	2	6	6	6
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	20.0	30.0	10.0	10.0	12.0	70.0	58.0	58.0	58.0
Total Split (%)	20.0%	30.0%	10.0%	10.0%	12.0%	70.0%	58.0%	58.0%	58.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0
Lead/Lag	Lead		Lag	Lag	Lead		Lag	Lag	Lag
Lead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)	12.9	12.7		5.5	79.4	80.4		66.5	66.5
Actuated g/C Ratio	0.13	0.13		0.06	0.79	0.80		0.66	0.66
v/c Ratio	0.46	0.24		0.05	0.36	0.16		0.34	0.37
Control Delay	36.4	12.6		39.2	4.7	3.1		10.2	2.0
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Total Delay	36.4	12.6		39.2	4.7	3.1		10.2	2.0
LOS	D	В		D	А	А		В	А
Approach Delay		27.5		39.3		4.0		6.0	
Approach LOS		С		D		А		А	
Intersection Summary									
Cycle Length: 100									
Actuated Cycle Length: 100									
Offset: 0 (0%), Referenced t		NBTL an	d 6 [.] SBTL	Start of	Green				
Natural Cycle: 55					Groon				
Control Type: Actuated-Coo	rdinated								
Maximum v/c Ratio: 0.46	anatou								
Intersection Signal Delay: 7.	.7			Ir	ntersectio	n LOS: A			
Intersection Capacity Utiliza)			CU Level		e A		
Analysis Period (min) 15		- 			2 2 20101	2. 20110			
, j									

Splits and Phases: 4: Coal Creek Blvd/County Line Road & Arapahoe Road

<1 Ø2 (R) ■	
70 s	30 s
◆ Ø5 • Ø6 (R)	▶ _{Ø7} ★ _{Ø8}
12 s 58 s	20 s 10 s

Timings	
14: N. 119th Street & State Highway 7 (Baseline Road))


	٦	+	4	Ļ	•	•	Ť	1	1	ţ	~	
_ane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	¢Î	ሻ	†	1	۳	•	1	ሻ	•	1	
Traffic Volume (vph)	40	285	420	620	120	40	95	165	75	340	80	
Future Volume (vph)	40	285	420	620	120	40	95	165	75	340	80	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free	
Protected Phases	7	4	3	8		5	2		1	6		
Permitted Phases	4		8		8	2		Free	6		Free	
Detector Phase	7	4	3	8	8	5	2		1	6		
Switch Phase												
/linimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0		
/linimum Split (s)	10.0	23.0	10.0	23.0	23.0	10.0	22.0		10.0	23.0		
Total Split (s)	23.0	46.0	13.0	36.0	36.0	11.0	24.0		17.0	30.0		
Fotal Split (%)	23.0%	46.0%	13.0%	36.0%	36.0%	11.0%	24.0%		17.0%	30.0%		
/ellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5		
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5		1.5	1.5		
ost Time Adjust (s)	-2.0	-3.0	-2.0	2.0	2.0	2.0	-2.0		-2.0	-2.0		
otal Lost Time (s)	3.0	2.0	3.0	7.0	7.0	7.0	3.0		3.0	3.0		
.ead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag		
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes		
Recall Mode	None	C-Max	None	C-Max	C-Max	None	None		None	None		
Act Effct Green (s)	55.0	47.4	61.4	51.4	51.4	19.2	20.0	100.0	31.2	24.7	100.0	
Actuated g/C Ratio	0.55	0.47	0.61	0.51	0.51	0.19	0.20	1.00	0.31	0.25	1.00	
//c Ratio	0.12	0.41	0.79	0.70	0.14	0.32	0.27	0.11	0.20	0.79	0.05	
Control Delay	10.3	19.5	35.2	36.2	3.3	30.4	35.3	0.1	26.7	53.3	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	10.3	19.5	35.2	36.2	3.3	30.4	35.3	0.1	26.7	53.3	0.1	
.OS	В	B	D	D	А	С	D	А	С	D	А	
Approach Delay		18.5		32.4			15.3			40.7		
Approach LOS		В		С			В			D		
ntersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 0 (0%), Referenced t	o phase 4	:EBTL an	d 8:WBTI	L, Start of	Green							
Vatural Cycle: 80												
Control Type: Actuated-Coo	rdinated											
/laximum v/c Ratio: 0.79												
ntersection Signal Delay: 29					ntersectio							
ntersection Capacity Utilizat	tion 77.5%	,)		10	CU Level	of Service	e D					
Analysis Period (min) 15												

Splits and Phases: 14: N. 119th Street & State Highway 7 (Baseline Road)

Ø1		√ ø2	√ Ø3	→ Ø4 (R) ♥
17 s		24 s	13 s	46 s
Ø 5	Ø6			●
11 s	30 s		23 s	36 s

	٨	-	-	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ኘ	†	1	1	ኘኘ	1
Traffic Volume (vph)	80	450	980	395	280	175
Future Volume (vph)	80	450	980	395	280	175
Turn Type	Prot	NA	NA	Perm	Prot	Free
Protected Phases	7	4	8		6	
Permitted Phases				8		Free
Detector Phase	7	4	8	8	6	
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	10.0	23.0	23.0	23.0	23.0	
Total Split (s)	15.0	75.0	60.0	60.0	25.0	
Total Split (%)	15.0%	75.0%	60.0%	60.0%	25.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Max	C-Max	C-Max	None	100.0
Act Effct Green (s)	8.9	77.0	66.3	66.3	15.0	100.0
Actuated g/C Ratio	0.09	0.77	0.66	0.66	0.15	1.00
v/c Ratio	0.28	0.34	0.83	0.36	0.58	0.12
Control Delay	37.5	4.4	22.4	1.8	41.1	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	37.5	4.4	22.4	1.8	41.1	0.1
LOS Approach Delay	D	A	C	А	D	А
Approach Delay		9.4	16.3		25.4	
Approach LOS		А	В		С	
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100						
Offset: 0 (0%), Referenced	to phase 4	EBT and	8:WBT, 3	Start of G	reen	
Natural Cycle: 90						
Control Type: Actuated-Coc	ordinated					
Maximum v/c Ratio: 0.83						
Intersection Signal Delay: 1					ntersection	
Intersection Capacity Utiliza	ation 66.2%)		10	CU Level	of Service
Analysis Period (min) 15						

Splits and Phases: 15: State Highway 7 (Baseline Road) & Coal Creek Blvd

Intersection

Int Delay, s/veh 0.1 EBT Movement EBL WBT WBR SBL SBR Lane Configurations ŧ ŧ ۴ ۴ 1365 730 5 5 Traffic Vol, veh/h 0 0 Future Vol, veh/h 0 730 1365 5 0 5 Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free RT Channelized -None Yield -None -Storage Length 200 0 ----Veh in Median Storage, # -0 0 -0 -Grade, % 0 0 0 ---Peak Hour Factor 92 92 92 92 92 92 Heavy Vehicles, % 2 2 2 2 2 2 Mvmt Flow 0 793 1484 5 0 5

Major/Minor	Major1	Ν	Najor2	Ν	/linor2	
Conflicting Flow All	-	0	-	0	-	1484
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.318
Pot Cap-1 Maneuver	0	-	-	-	0	153
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	• -	-	-	-	-	153
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	; 0		0		29.4	
HCM LOS					D	
Minor Lane/Major Mvr	mt	EBT	WBT	WBR S	SBI n1	
Capacity (veh/h)				WDRC	153	
HCM Lane V/C Ratio		-	-	-	0.036	
HCM Control Delay (s	•1	-	-	-	29.4	
HCM Lane LOS	<i>)</i>	-	-	-	27.4 D	
HCM 95th %tile Q(vel	h)				0.1	

Timings 1: N. 119th Street & Arapahoe Road

	٦	-	4	-	1	1	1	ţ	~
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	۲ ۲	el e	۲ ۲	el el	۲ ۲	el el	1	•	1
Traffic Volume (vph)	130	425	50	190	140	205	20	150	90
Future Volume (vph)	130	425	50	190	140	205	20	150	90
Turn Type	pm+pt	NA	pm+pt	NA	pm+pt	NA	pm+pt	NA	Perm
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases	4		8		2		6		6
Detector Phase	7	4	3	8	5	2	1	6	6
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	23.0	10.0	23.0	10.0	23.0	10.0	23.0	23.0
Total Split (s)	12.0	47.0	12.0	47.0	12.0	29.0	12.0	29.0	29.0
Total Split (%)	12.0%	47.0%	12.0%	47.0%	12.0%	29.0%	12.0%	29.0%	29.0%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	2.0	-2.0	-2.0	2.0
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	7.0	3.0	3.0	7.0
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	C-Max
Act Effct Green (s)	50.4	43.2	49.1	40.6	40.3	32.7	37.7	29.5	25.5
Actuated g/C Ratio	0.50	0.43	0.49	0.41	0.40	0.33	0.38	0.30	0.26
v/c Ratio	0.24	0.93	0.24	0.29	0.33	0.52	0.05	0.29	0.19
Control Delay	12.4	46.3	18.2	25.4	32.1	41.5	19.9	30.9	3.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.4	46.3	18.2	25.4	32.1	41.5	19.9	30.9	3.5
LOS	В	D	В	С	С	D	В	С	А
Approach Delay		40.9		24.0		38.4		20.6	
Approach LOS		D		С		D		С	
Intersection Summary									
Cycle Length: 100									
Actuated Cycle Length: 100									
Offset: 0 (0%), Referenced t	to phase 2	:NBTL an	d 6:SBTL	., Start of	Green				
Natural Cycle: 80									
Control Type: Actuated-Coo	ordinated								
Maximum v/c Ratio: 0.93									
Intersection Signal Delay: 34					ntersectio				
Intersection Capacity Utiliza	tion 78.4%)		10	CU Level	of Service	e D		
Analysis Period (min) 15									

Splits and Phases: 1: N. 119th Street & Arapahoe Road

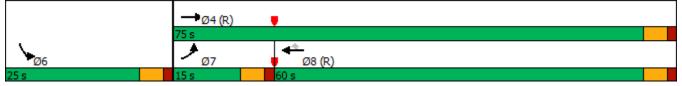
Ø1	∎ ¶ Ø2 (R)	√ Ø3	<u></u> 04
12 s	29 s	12 s	47 s
▲ Ø5	Ø6 (R)		₩ Ø8
12 s	29 s	12 s	47 s

Timings 4: Coal Creek Blvd & Arapahoe Road

	≯	+	4	+	1	1	1	ţ	~
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	1	4Î		\$	۲	el el		र्च	1
Traffic Volume (vph)	360	1	2	1	85	450	2	280	175
Future Volume (vph)	360	1	2	1	85	450	2	280	175
Turn Type	pm+pt	NA	Perm	NA	pm+pt	NA	Perm	NA	Perm
Protected Phases	7	4		8	5	2		6	
Permitted Phases	4		8		2		6		6
Detector Phase	7	4	8	8	5	2	6	6	6
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	30.0	40.0	10.0	10.0	12.0	60.0	48.0	48.0	48.0
Total Split (%)	30.0%	40.0%	10.0%	10.0%	12.0%	60.0%	48.0%	48.0%	48.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0
Lead/Lag	Lead		Lag	Lag	Lead		Lag	Lag	Lag
Lead-Lag Optimize?	Yes	N 1	Yes	Yes	Yes	0.14	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)	25.4	25.4		5.2	64.6	64.6		54.8	54.8
Actuated g/C Ratio	0.25	0.25		0.05	0.65	0.65		0.55	0.55
v/c Ratio	0.87 34.2	0.28		0.05	0.14 5.7	0.40		0.29	0.19
Control Delay	34.2 0.0	2.8		39.6 0.0		7.3		15.3 0.0	3.0
Queue Delay		0.0 2.8			0.0 5.7	0.0		15.3	0.0 3.0
Total Delay LOS	34.2 C	2.8 A		39.6 D	5.7 A	7.3 A		15.3 B	3.0 A
Approach Delay		A 25.6		39.6	A	A 7.0		в 10.6	A
Approach LOS		25.0 C		39.0 D		7.0 A		10.0 B	
Intersection Summary		0				A			
Cycle Length: 100	`								
Actuated Cycle Length: 100				Ctart of	Croon				
Offset: 0 (0%), Referenced	to phase 2	INBILAN	0.0:2RT	, Start of	Green				
Natural Cycle: 55 Control Type: Actuated-Coo	ordinated								
Maximum v/c Ratio: 0.87	Junaleu								
Intersection Signal Delay: 1	1 1			١,	ntersectio				
Intersection Capacity Utiliza						of Service			
Analysis Period (min) 15	auon 77.070)		I.	JU Level				

Splits and Phases: 4: Coal Creek Blvd & Arapahoe Road

Timings	
14: N. 119th Street & State Highway 7 (Baseline Road))


	٭	→	4	+	×	1	1	۲	1	Ļ	-	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ľ	el el	٢	•	1	ľ	•	1	ľ	•	1	
Traffic Volume (vph)	90	675	195	460	95	30	235	395	275	140	55	
Future Volume (vph)	90	675	195	460	95	30	235	395	275	140	55	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free	
Protected Phases	7	4	3	8		5	2		1	6		
Permitted Phases	4		8		8	2		Free	6		Free	
Detector Phase	7	4	3	8	8	5	2		1	6		
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0		
Minimum Split (s)	10.0	23.0	10.0	23.0	23.0	10.0	22.0		10.0	23.0		
Total Split (s)	22.0	46.0	14.0	38.0	38.0	12.0	23.0		17.0	28.0		
Total Split (%)	22.0%	46.0%	14.0%	38.0%	38.0%	12.0%	23.0%		17.0%	28.0%		
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5		
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5		1.5	1.5		
Lost Time Adjust (s)	-2.0	-3.0	-2.0	2.0	2.0	2.0	-2.0		-2.0	-2.0		
Total Lost Time (s)	3.0	2.0	3.0	7.0	7.0	7.0	3.0		3.0	3.0		
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes		
Recall Mode	None	C-Max	None	C-Max	C-Max	None	None		None	None		
Act Effct Green (s)	54.5	45.7	57.1	44.1	44.1	18.7	18.2	100.0	35.2	28.1	100.0	
Actuated g/C Ratio	0.54	0.46	0.57	0.44	0.44	0.19	0.18	1.00	0.35	0.28	1.00	
v/c Ratio	0.19	0.86	0.73	0.57	0.12	0.12	0.71	0.25	0.78	0.27	0.04	
Control Delay	10.6	37.2	37.6	41.0	7.9	25.0	50.1	0.4	36.3	25.7	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	10.6	37.2	37.6	41.0	7.9	25.0	50.1	0.4	36.3	25.7	0.0	
LOS	В	D	D	D	А	С	D	А	D	С	А	
Approach Delay		34.3		35.9			19.2			28.9		
Approach LOS		С		D			В			С		
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100)											
Offset: 0 (0%), Referenced		:EBTL an	d 8:WBTI	L, Start of	f Green							
Natural Cycle: 80												
Control Type: Actuated-Coc	ordinated											
Maximum v/c Ratio: 0.86												
Intersection Signal Delay: 3	0.1			I	ntersectio	n LOS: C						
Intersection Capacity Utiliza		,)](CU Level	of Service	e E					
Analysis Period (min) 15												

Splits and Phases: 14: N. 119th Street & State Highway 7 (Baseline Road)

Ø1		1 Ø2	√ Ø3	→ _{04 (♥)}	
17 s		23 s	14 s	46 s	
▲ Ø5		06		🗸 🗘 🖉 Ø8 (R)	
12 s	28 s		22 s	38 s	

	٦	-	+	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ካካ	†	†	1	ካካ	1
Traffic Volume (vph)	185	1150	665	315	365	80
Future Volume (vph)	185	1150	665	315	365	80
Turn Type	Prot	NA	NA	Perm	Prot	Free
Protected Phases	7	4	8		6	
Permitted Phases				8		Free
Detector Phase	7	4	8	8	6	
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	10.0	23.0	23.0	23.0	23.0	
Total Split (s)	15.0	75.0	60.0	60.0	25.0	
Total Split (%)	15.0%	75.0%	60.0%	60.0%	25.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Max	C-Max	C-Max	None	
Act Effct Green (s)	11.1	74.8	59.7	59.7	17.2	100.0
Actuated g/C Ratio	0.11	0.75	0.60	0.60	0.17	1.00
v/c Ratio	0.51	0.84	0.63	0.31	0.65	0.05
Control Delay	37.1	17.7	17.1	2.0	44.1	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	37.1	17.7	17.1	2.0	44.1	0.1
LOS	D	В	B	А	D	А
Approach Delay		20.5	12.2		36.2	
Approach LOS		С	В		D	
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100						
Offset: 0 (0%), Referenced	to phase 4	:EBT and	8:WBT, 3	Start of G	reen	
Natural Cycle: 80						
Control Type: Actuated-Coo	ordinated					
Maximum v/c Ratio: 0.84						
Intersection Signal Delay: 2					ntersectio	
Intersection Capacity Utiliza	ation 77.6%)		10	CU Level	of Service
Analysis Period (min) 15						

Splits and Phases: 15: State Highway 7 (Baseline Road) & Coal Creek Blvd

Intersection

Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		1	1	1		1
Traffic Vol, veh/h	0	1515	965	3	0	10
Future Vol, veh/h	0	1515	965	3	0	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Yield	-	None
Storage Length	-	-	-	200	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	1647	1049	3	0	11

Major/Minor	Major1	Ν	/lajor2	N	linor2	
Conflicting Flow All	-	0	-	0	-	1049
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.318
Pot Cap-1 Maneuver	0	-	-	-	0	276
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	-	276
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		18.6	
HCM LOS					С	
Minor Long/Major Mun	nt	ГДТ			DI n1	
Minor Lane/Major Mvn	nt	EBT	WBT	WBR S		
Capacity (veh/h)		-	-	-	276	
HCM Lane V/C Ratio	\	-	-		0.039	
HCM Control Delay (s))	-	-	-	18.6	
HCM Lane LOS		-	-	-	C	
HCM 95th %tile Q(veh	1)	-	-	-	0.1	

Timings 1: N. 119th Street & Arapahoe Road

	٦	+	4	+	<	1	*	ţ	~	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	<u>۲</u>	el F	<u>۲</u>	ef 👘	<u>۲</u>	el el	۲	†	1	
Traffic Volume (vph)	30	150	129	591	241	100	15	235	130	
uture Volume (vph)	30	150	129	591	241	100	15	235	130	
Furn Type	pm+pt	NA	pm+pt	NA	pm+pt	NA	pm+pt	NA	Perm	
Protected Phases	7	4	3	8	5	2	1	6		
Permitted Phases	4		8		2		6		6	
Detector Phase	7	4	3	8	5	2	1	6	6	
Switch Phase										
1inimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
/linimum Split (s)	10.0	23.0	10.0	23.0	10.0	23.0	10.0	23.0	23.0	
Fotal Split (s)	12.0	47.0	12.0	47.0	12.0	29.0	12.0	29.0	29.0	
Fotal Split (%)	12.0%	47.0%	12.0%	47.0%	12.0%	29.0%	12.0%	29.0%	29.0%	
ellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
ost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	2.0	-2.0	-2.0	2.0	
otal Lost Time (s)	3.0	3.0	3.0	3.0	3.0	7.0	3.0	3.0	7.0	
ead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lag	
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	C-Max	
ct Effct Green (s)	45.2	36.8	47.0	41.6	44.1	36.5	39.8	31.7	27.7	
ctuated g/C Ratio	0.45	0.37	0.47	0.42	0.44	0.36	0.40	0.32	0.28	
/c Ratio	0.15	0.43	0.30	0.88	0.60	0.23	0.03	0.43	0.26	
Control Delay	12.1	19.9	16.2	41.7	38.0	34.5	19.5	32.0	7.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	12.1	19.9	16.2	41.7	38.0	34.5	19.5	32.0	7.0	
OS	В	B	В	D	D	С	В	C	А	
pproach Delay		19.1		37.4		36.7		23.0		
pproach LOS		В		D		D		С		
tersection Summary										
Cycle Length: 100 Actuated Cycle Length: 100)									
Offset: 0 (0%), Referenced				Start of	Croon					
atural Cycle: 75	iu priase z.	IND I L dII	U 0.3DTL	., Start U	Gleen					
control Type: Actuated-Cod	ordinatod									
laximum v/c Ratio: 0.88	Junaleu									
itersection Signal Delay: 3	1 2			Ir	ntersectio	n I OS· C				
ntersection Signal Delay. 3						of Service	2 D			
Analysis Period (min) 15	10011 / 0.7 /0			IC.						

Splits and Phases: 1: N. 119th Street & Arapahoe Road

Ø1	🗖 🔊 🖉 Ø2 (R)	√ Ø3	<u></u> 04
12 s	29 s	12 s	47 s
▲ Ø5	Ø6 (R)		₩ Ø8
12 s	29 s	12 s	47 s

Intersection

Int Delay, s/veh	0.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	1	٦	1	٦	1
Traffic Vol, veh/h	185	7	3	686	22	8
Future Vol, veh/h	185	7	3	686	22	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	225	275	-	0	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	201	8	3	746	24	9

Major/Minor	Major1	Major2		Minor1	
Conflicting Flow All	0	0 209	() 953	201
Stage 1	-			- 201	-
Stage 2	-			- 752	-
Critical Hdwy	-	- 4.12		- 6.42	6.22
Critical Hdwy Stg 1	-			- 5.42	-
Critical Hdwy Stg 2	-			- 5.42	-
Follow-up Hdwy	-	- 2.218		- 3.518	3.318
Pot Cap-1 Maneuver	-	- 1362		- 287	840
Stage 1	-			- 833	-
Stage 2	-			- 466	-
Platoon blocked, %	-	-		-	
Mov Cap-1 Maneuve	r -	- 1362		- 286	840
Mov Cap-2 Maneuve	r -			- 286	-
Stage 1	-			- 833	-
Stage 2	-			- 465	-
Approach	EB	WB		NB	

Approach	EB	WB	NB
HCM Control Delay, s	0	0	16.2
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1 N	IBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	286	840	-	-	1362	-
HCM Lane V/C Ratio	0.084	0.01	-	-	0.002	-
HCM Control Delay (s)	18.7	9.3	-	-	7.7	-
HCM Lane LOS	С	А	-	-	А	-
HCM 95th %tile Q(veh)	0.3	0	-	-	0	-

Intersection

Int Delay, s/veh	1.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	1	٦	1	٦	1
Traffic Vol, veh/h	180	13	6	649	40	18
Future Vol, veh/h	180	13	6	649	40	18
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	225	275	-	0	0
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	196	14	7	705	43	20

Major/Minor	Major1	Мајо	r2	Ν	/linor1	
Conflicting Flow All	0	0 2		0	915	196
Stage 1	-	-	-	-	196	-
Stage 2	-	-	-	-	719	-
Critical Hdwy	-	- 4.1	2	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	- 2.2	8	-	3.518	3.318
Pot Cap-1 Maneuver	-	- 130	51	-	303	845
Stage 1	-	-	-	-	837	-
Stage 2	-	-	-	-	483	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuve	r -	- 130	51	-	301	845
Mov Cap-2 Maneuver	r -	-	-	-	301	-
Stage 1	-	-	-	-	837	-
Stage 2	-	-	-	-	481	-
Approach	EB	W	'B		NB	
HCM Control Delay, s	s 0	0	.1		16	

······································	-	•••		
HCM LOS			С	

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)	301	845	-	-	1361	-	
HCM Lane V/C Ratio	0.144	0.023	-	-	0.005	-	
HCM Control Delay (s)	19	9.4	-	-	7.7	-	
HCM Lane LOS	С	А	-	-	А	-	
HCM 95th %tile Q(veh)	0.5	0.1	-	-	0	-	

Timings			
4: Coal Creek Blvd/County	Line Road	& Ara	pahoe Road

	٦	+	4	+	•	1	1	ţ	~
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	1	el el		\$	ľ	el el		र्स	1
Traffic Volume (vph)	118	1	2	1	266	261	2	382	388
Future Volume (vph)	118	1	2	1	266	261	2	382	388
Turn Type	pm+pt	NA	Perm	NA	pm+pt	NA	Perm	NA	Perm
Protected Phases	7	4		8	5	2		6	
Permitted Phases	4		8		2		6		6
Detector Phase	7	4	8	8	5	2	6	6	6
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	20.0	30.0	10.0	10.0	12.0	70.0	58.0	58.0	58.0
Total Split (%)	20.0%	30.0%	10.0%	10.0%	12.0%	70.0%	58.0%	58.0%	58.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0
Lead/Lag	Lead		Lag	Lag	Lead		Lag	Lag	Lag
Lead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)	14.4	14.4		5.3	75.6	75.6		61.5	61.5
Actuated g/C Ratio	0.14	0.14		0.05	0.76	0.76		0.62	0.62
v/c Ratio	0.56	0.31		0.05	0.48	0.22		0.39	0.39
Control Delay	43.0	11.3		39.5	7.4	4.8		12.2	2.2
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Total Delay	43.0	11.3		39.5	7.4	4.8		12.2	2.2
LOS	D	В		D	А	А		В	А
Approach Delay		30.1		39.5		6.1		7.2	
Approach LOS		С		D		А		А	
Intersection Summary									
Cycle Length: 100									
Actuated Cycle Length: 10	0								
Offset: 0 (0%), Referenced		:NBTL an	d 6:SBTL	., Start of	Green				
Natural Cycle: 60									
Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 0.56									
Intersection Signal Delay:	9.9			Ir	ntersectio	n LOS: A			
Intersection Capacity Utiliz	lization 60.7% ICU Level of Service B								
Analysis Period (min) 15									

Splits and Phases: 4: Coal Creek Blvd/County Line Road & Arapahoe Road

Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	^	- 11	1	٦	1
Traffic Vol, veh/h	16	510	480	4	12	47
Future Vol, veh/h	16	510	480	4	12	47
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	325	-	-	275	0	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	17	554	522	4	13	51

Major/Minor	Major1	Ма	ajor2	Ν	/linor2	
Conflicting Flow All	526	0	-	0	833	261
Stage 1	-	-	-	-	522	-
Stage 2	-	-	-	-	311	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	1037	-	-	-	307	738
Stage 1	-	-	-	-	560	-
Stage 2	-	-	-	-	716	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1037	-	-	-	302	738
Mov Cap-2 Maneuver	-	-	-	-	302	-
Stage 1	-	-	-	-	551	-
Stage 2	-	-	-	-	716	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		11.7	

HCM LOS В

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	SBLn2
Capacity (veh/h)	1037	-	-	- 302	738
HCM Lane V/C Ratio	0.017	-	-	- 0.043	0.069
HCM Control Delay (s)	8.5	-	-	- 17.5	10.2
HCM Lane LOS	А	-	-	- C	В
HCM 95th %tile Q(veh)	0.1	-	-	- 0.1	0.2

Int Delay, s/veh	1.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	- ሽ	1	- ሽ	- 11	- 11	1
Traffic Vol, veh/h	18	65	22	508	521	6
Future Vol, veh/h	18	65	22	508	521	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	350	-	-	275
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	20	71	24	552	566	7

Major/Minor	Minor2	Ν	/lajor1	Maj	or2	
Conflicting Flow All	890	283	573	0	-	0
Stage 1	566	-	-	-	-	-
Stage 2	324	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	282	714	996	-	-	-
Stage 1	532	-	-	-	-	-
Stage 2	705	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve	r 275	714	996	-	-	-
Mov Cap-2 Maneuver	r 275	-	-	-	-	-
Stage 1	519	-	-	-	-	-
Stage 2	705	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	12.4	0.4	0
HCM LOS	В		

Minor Lane/Major Mvmt	NBL	NBT	EBLn1	EBLn2	SBT	SBR
Capacity (veh/h)	996	-	275	714	-	-
HCM Lane V/C Ratio	0.024	-	0.071	0.099	-	-
HCM Control Delay (s)	8.7	-	19.1	10.6	-	-
HCM Lane LOS	А	-	С	В	-	-
HCM 95th %tile Q(veh)	0.1	-	0.2	0.3	-	-

Timings	
8: Coal Creek Blvd & Main Site Access/Old E. County	/ Line Road

	۶	\mathbf{F}	4	•	1	Ť	۲	1	ţ	~	
Lane Group	EBL	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	<u>۳</u>	1	ኘ	4	ኘ	- † †	1	ኘ	- † †	1	
Traffic Volume (vph)	27	72	97	0	24	451	53	12	578	5	
Future Volume (vph)	27	72	97	0	24	451	53	12	578	5	
Turn Type	pm+pt	Perm	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases	7		3	8	5	2		1	6		
Permitted Phases	4	4	8		2		2	6		6	
Detector Phase	7	4	3	8	5	2	2	1	6	6	
Switch Phase											
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Total Split (s)	10.0	15.0	10.0	15.0	10.0	65.0	65.0	10.0	65.0	65.0	
Total Split (%)	10.0%	15.0%	10.0%	15.0%	10.0%	65.0%	65.0%	10.0%	65.0%	65.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	Max	Max	Max	None	Min	Min	
Act Effct Green (s)	9.3	5.6	11.2	9.5	61.9	62.3	62.3	57.7	52.6	52.6	
Actuated g/C Ratio	0.11	0.07	0.13	0.11	0.74	0.75	0.75	0.69	0.63	0.63	
v/c Ratio	0.16	0.18	0.57	0.05	0.05	0.19	0.05	0.02	0.28	0.00	
Control Delay	33.9	1.0	47.2	0.1	3.9	5.1	0.1	3.8	8.3	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	33.9	1.0	47.2	0.1	3.9	5.1	0.1	3.8	8.3	0.0	
LOS	С	А	D	А	А	А	А	А	А	А	
Approach Delay				37.0		4.5			8.2		
Approach LOS				D		А			А		
Intersection Summary											
Cycle Length: 100											
Actuated Cycle Length: 83.4											
Natural Cycle: 45											
Control Type: Actuated-Unco	ordinated	1									
Maximum v/c Ratio: 0.57											
Intersection Signal Delay: 9.5	5			lr	ntersectio	n LOS: A					
Intersection Capacity Utilizat)		(CU Level	of Service	A				
Analysis Period (min) 15											

Splits and Phases: 8: Coal Creek Blvd & Main Site Access/Old E. County Line Road

Ø1	1 mg2		(Ø 3	4 ₀₄	
10 s	65 s	1	0 s		15 s	
▲ ø5			∕∙	Ø7	Ø8	
10 s	65 s	1	0 s		15 s	

Int Delay, s/veh	1.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1	٦	- 11	- 11	1
Traffic Vol, veh/h	0	122	18	568	738	10
Future Vol, veh/h	0	122	18	568	738	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	380	-	-	275
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	133	20	617	802	11

Major/Minor	Minor2	Ν	/lajor1	Maj	or2	
Conflicting Flow All	-	401	813	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	4.14	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	0	599	810	-	-	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve		599	810	-	-	-
Mov Cap-2 Maneuve	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	12.7	0.3	0
HCM LOS	В		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	810	- 599	-	-
HCM Lane V/C Ratio	0.024	- 0.221	-	-
HCM Control Delay (s)	9.6	- 12.7	-	-
HCM Lane LOS	А	- B	-	-
HCM 95th %tile Q(veh)	0.1	- 0.8	-	-

	4	•	1	*	*	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	1	†	1	<u> </u>	1
Traffic Volume (vph)	94	74	308	31	24	528
Future Volume (vph)	94	74	308	31	24	528
Turn Type	Prot	pt+ov	NA	Perm	pm+pt	NA
Protected Phases	8	81	2		1	6
Permitted Phases				2	6	
Detector Phase	8	81	2	2	1	6
Switch Phase						
Minimum Initial (s)	5.0		5.0	5.0	5.0	5.0
Minimum Split (s)	23.0		23.0	23.0	10.0	23.0
Total Split (s)	30.0		58.0	58.0	12.0	70.0
Total Split (%)	30.0%		58.0%	58.0%	12.0%	70.0%
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.5		1.5	1.5	1.5	1.5
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0		5.0	5.0	5.0	5.0
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?			Yes	Yes	Yes	
Recall Mode	None		C-Max	C-Max	None	C-Max
Act Effct Green (s)	11.1	22.0	70.1	70.1	78.9	78.9
Actuated g/C Ratio	0.11	0.22	0.70	0.70	0.79	0.79
v/c Ratio	0.52	0.20	0.26	0.03	0.03	0.39
Control Delay	50.7	8.0	2.7	0.1	2.8	4.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	50.7	8.0	2.7	0.1	2.8	4.5
LOS	D	А	А	А	А	А
Approach Delay	31.9		2.5			4.4
Approach LOS	С		А			А
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 10	00					
Offset: 0 (0%), Reference		NBT and	6:SBTL,	Start of C	Green	
Natural Cycle: 60						
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.52						
Intersection Signal Delay:	8.1			lr	ntersectio	n LOS: A
Intersection Capacity Utiliz				10	CU Level	of Service
Analysis Period (min) 15						

Splits and Phases: 10: N. 119th Street & West Full Movement Site Access

Int Delay, s/veh	3.5						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	٦	1	1	1	Y		
Traffic Vol, veh/h	19	46	66	0	1	57	
Future Vol, veh/h	19	46	66	0	1	57	
Conflicting Peds, #/hr	0	0	0	0	0	0	1
Sign Control	Free	Free	Free	Free	Stop	Stop	1
RT Channelized	-	None	-	None	-	None	;
Storage Length	150	-	-	150	0	-	
Veh in Median Storage	# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	21	50	72	0	1	62	

Major/Minor	Major1	Ν	/lajor2	[Vinor2	
Conflicting Flow All	72	0	-	0	164	72
Stage 1	-	-	-	-	72	-
Stage 2	-	-	-	-	92	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1528	-	-	-	827	990
Stage 1	-	-	-	-	951	-
Stage 2	-	-	-	-	932	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	815	990
Mov Cap-2 Maneuver	r -	-	-	-	815	-
Stage 1	-	-	-	-	938	-
Stage 2	-	-	-	-	932	-
Approach	EB		WB		SB	
HCM Control Delay, s	s 2.2		0		8.9	
HCM LOS					А	
Minor Lane/Major Mv	mt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1528	-	-	-	986
HCM Lane V/C Ratio		0.014	-	-	-	0.064
HCM Control Delay (s	s)	7.4	-	-	-	8.9
HCM Lane LOS		А	-	-	-	А
HCM 95th %tile Q(vel	h)	0	-	-	-	0.2

Int Delay, s/veh	5.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	1	1	1	٦	1
Traffic Vol, veh/h	16	31	15	7	24	51
Future Vol, veh/h	16	31	15	7	24	51
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	150	-	-	150	0	0
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	17	34	16	8	26	55

Major/Minor	Major1	M	ajor2	ļ	Minor2	
Conflicting Flow All	24	0	-	0	84	16
Stage 1	-	-	-	-	16	-
Stage 2	-	-	-	-	68	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1591	-	-	-	918	1063
Stage 1	-	-	-	-	1007	-
Stage 2	-	-	-	-	955	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	908	1063
Mov Cap-2 Maneuver	-	-	-	-	908	-
Stage 1	-	-	-	-	996	-
Stage 2	-	-	-	-	955	-
Approach	EB		WB		SB	
HCM Control Delay, s			0		8.8	
HCM LOS					A	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	SBLn2	
Capacity (veh/h)	1591	-	-	- 908	1063	
HCM Lane V/C Ratio	0.011	-	-	- 0.029	0.052	
HCM Control Delay (s)	7.3	-	-	- 9.1	8.6	
HCM Lane LOS	А	-	-	- A	A	
HCM 95th %tile Q(veh)	0	-	-	- 0.1	0.2	

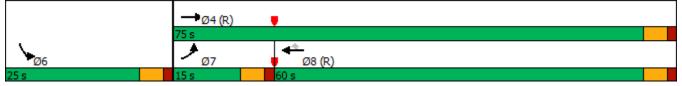
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	↑	1	- ሽ	↑
Traffic Vol, veh/h	0	27	312	15	7	614
Future Vol, veh/h	0	27	312	15	7	614
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	225	250	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	29	339	16	8	667

Major/Minor	Minor1	Ν	/lajor1		Major2	
Conflicting Flow All	-	339	0	0	355	0
Stage 1	-	-	_	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.22	-	-	4.12	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy		3.318	-	-	2.218	-
Pot Cap-1 Maneuver	0	*832	-	-	1237	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %		1	-	-	1	-
Mov Cap-1 Maneuver		*832	-	-	1237	-
Mov Cap-2 Maneuver	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	s 9.5		0		0.1	
HCM LOS	A					
Minor Long/Major Mu	una t	NDT		/DI1	CDI	СПТ
Minor Lane/Major Mv	mi	NBT	NBRW		SBL	SBT
Capacity (veh/h)		-	-	832	1237	-
HCM Lane V/C Ratio		-				-
HCM Control Delay (s	S)	-	-	9.5	7.9	-
HCM Lane LOS	μ)	-	-	A	A	-
HCM 95th %tile Q(vel	n)	-	-	0.1	0	-

Notes

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Timings	
14: N. 119th Street & State Highway 7 (Baseline Road))


	٦	-	4	+	•	1	Ť	1	1	ţ	~	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	1	el el	<u>ک</u>	•	1	۲ ۲	•	1	ľ	•	1	
Traffic Volume (vph)	61	315	487	731	150	40	116	182	99	390	125	
Future Volume (vph)	61	315	487	731	150	40	116	182	99	390	125	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free	
Protected Phases	7	4	3	8		5	2		1	6		
Permitted Phases	4		8		8	2		Free	6		Free	
Detector Phase	7	4	3	8	8	5	2		1	6		
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0		
Minimum Split (s)	10.0	23.0	10.0	23.0	23.0	10.0	22.0		10.0	23.0		
Total Split (s)	23.0	46.0	13.0	36.0	36.0	11.0	24.0		17.0	30.0		
Total Split (%)	23.0%	46.0%	13.0%	36.0%	36.0%	11.0%	24.0%		17.0%	30.0%		
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5		
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5		1.5	1.5		
Lost Time Adjust (s)	-2.0	-3.0	-2.0	2.0	2.0	2.0	-2.0		-2.0	-2.0		
Fotal Lost Time (s)	3.0	2.0	3.0	7.0	7.0	7.0	3.0		3.0	3.0		
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes		
Recall Mode	None	C-Max	None	C-Max	C-Max	None	None	100.0	None	None	100.0	
Act Effct Green (s)	52.1	44.0	59.6	47.3	47.3	18.0	18.1	100.0	32.6	26.0	100.0	
Actuated g/C Ratio	0.52	0.44	0.60	0.47	0.47	0.18	0.18	1.00	0.33	0.26	1.00	
v/c Ratio	0.27	0.49	0.97	0.89	0.18	0.32	0.37	0.12	0.26	0.86	0.08	
Control Delay	12.5	21.9	54.3	44.5	4.4	30.5	37.9	0.2	22.6	54.0	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	12.5	21.9	54.3	44.5	4.4	30.5	37.9	0.2	22.6 C	54.0	0.1	
LOS	В	C	D	D	А	С	D	А	C	D	А	
Approach Delay Approach LOS		20.6 C		43.6 D			16.7 B			38.0 D		
Intersection Summary		C		D			D			D		
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 0 (0%), Referenced		·FRTL an	d 8·/WRTI	Start of	Graan							
Vatural Cycle: 90	to phase 4		u 0.11DTI		Olcen							
Control Type: Actuated-Coo	ordinated											
Maximum v/c Ratio: 0.97	nunateu											
ntersection Signal Delay: 3	54			h	ntersectio	n I ()S· D						
Intersection Capacity Utiliza					CU Level		۶F					
Analysis Period (min) 15	00.070) 		, in the second se			- L					

Splits and Phases: 14: N. 119th Street & State Highway 7 (Baseline Road)

Ø1		↑ _{Ø2}	√ Ø3	→ Ø4 (R) ♥
17 s		24 s	13 s	46 s
Ø 5	Ø	5	<u>∕</u> _{Ø7}	♥ ♥ Ø8 (R)
11 s	30 s		23 s	36 s

	٦	→	-	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ኘ	†	†	1	ኘኘ	1
Traffic Volume (vph)	127	474	992	458	489	370
Future Volume (vph)	127	474	992	458	489	370
Turn Type	Prot	NA	NA	Perm	Prot	Free
Protected Phases	7	4	8		6	
Permitted Phases				8		Free
Detector Phase	7	4	8	8	6	
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	10.0	23.0	23.0	23.0	23.0	
Total Split (s)	15.0	75.0	60.0	60.0	25.0	
Total Split (%)	15.0%	75.0%	60.0%	60.0%	25.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Max	C-Max	C-Max	None	
Act Effct Green (s)	9.9	72.3	58.4	58.4	19.7	100.0
Actuated g/C Ratio	0.10	0.72	0.58	0.58	0.20	1.00
v/c Ratio	0.40	0.38	0.95	0.44	0.78	0.25
Control Delay	40.2	6.2	39.2	2.3	46.6	0.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	40.2	6.2	39.2	2.3	46.6	0.4
LOS	D	А	D	А	D	А
Approach Delay		13.4	27.3		26.7	
Approach LOS		В	С		С	
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100						
Offset: 0 (0%), Referenced		·FBT and	8·WRT	Start of G	reen	
Natural Cycle: 90			0.001,			
Control Type: Actuated-Coo	ordinated					
Maximum v/c Ratio: 0.95	anatou					
Intersection Signal Delay: 2	4 2			Ir	ntersection	1105.0
Intersection Capacity Utiliza		,				of Service
Analysis Period (min) 15	1.011 / 3.0 /	,		N		

Splits and Phases: 15: State Highway 7 (Baseline Road) & Coal Creek Blvd

Int Delay, s/veh 0.1 EBT Movement EBL WBT WBR SBL SBR Lane Configurations ŧ ŧ ۴ ۴ 5 5 Traffic Vol, veh/h 0 963 1441 0 Future Vol, veh/h 0 963 1441 5 0 5 Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free **RT** Channelized -None Yield -None -Storage Length 200 0 ----Veh in Median Storage, # -0 0 -0 -Grade, % 0 0 0 ---Peak Hour Factor 92 92 92 92 92 92 Heavy Vehicles, % 2 2 2 2 2 2 Mvmt Flow 0 1047 1566 5 0 5

Major1	N	Major2	Ν	/linor2	
-	0	-	0	-	1566
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	6.22
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	3.318
0	-	-	-	0	137
	-	-	-		-
0	-	-	-	0	-
	-	-	-		
	-	-	-	-	137
· -	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
EB		WB		SB	
0		0		32.4	
				D	
mt	FRT	W/RT	W/RR S	RI n1	
m	LDI		WDIX C		
	-	-	-		
.)	-	-	-		
<i>y</i> /	_	_	-		
n)	-	-			
	- - - - - - - - - - - - - - - - - - -	- 0 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Timings 1: N. 119th Street & Arapahoe Road

	٦	-	4	+	1	1	1	ţ	~
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	ľ	¢Î	ľ	el el	ľ	el el	۲ ۲	•	1
Traffic Volume (vph)	130	492	78	224	182	228	54	185	90
Future Volume (vph)	130	492	78	224	182	228	54	185	90
Turn Type	pm+pt	NA	pm+pt	NA	pm+pt	NA	pm+pt	NA	Perm
Protected Phases	7	4	3	8	5	2	1	6	
Permitted Phases	4		8		2		6		6
Detector Phase	7	4	3	8	5	2	1	6	6
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	23.0	10.0	23.0	10.0	23.0	10.0	23.0	23.0
Total Split (s)	12.0	47.0	12.0	47.0	12.0	29.0	12.0	29.0	29.0
Total Split (%)	12.0%	47.0%	12.0%	47.0%	12.0%	29.0%	12.0%	29.0%	29.0%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	2.0	-2.0	-2.0	2.0
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	7.0	3.0	3.0	7.0
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	C-Max
Act Effct Green (s)	53.6	46.4	52.8	44.1	35.7	24.5	34.6	26.0	22.0
Actuated g/C Ratio	0.54	0.46	0.53	0.44	0.36	0.24	0.35	0.26	0.22
v/c Ratio	0.24	1.04	0.37	0.34	0.51	0.84	0.20	0.41	0.21
Control Delay	11.8	68.4	20.1	20.3	35.8	61.1	21.8	33.7	3.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	11.8	68.4	20.1	20.3	35.8	61.1	21.8	33.7	3.7
LOS	В	E	С	С	D	E	С	С	А
Approach Delay		60.6		20.2		52.5		23.5	
Approach LOS		E		С		D		С	
Intersection Summary									
Cycle Length: 100									
Actuated Cycle Length: 100				Charles	C				
Offset: 0 (0%), Referenced t	to phase 2	INBIL an	0 6:281L	., Start of	Green				
Natural Cycle: 90	rdinatad								
Control Type: Actuated-Coo	rainatea								
Maximum v/c Ratio: 1.04	4 4			1.	torcotio	n I OC. D			
Intersection Signal Delay: 46					ntersectio CU Level		Σ.E.		
Intersection Capacity Utilizat Analysis Period (min) 15	1011 89.5%)		10	JU Level	UI SEIVICE			
Analysis Peniou (Iniin) 15									

Splits and Phases: 1: N. 119th Street & Arapahoe Road

Ø1	∎ ¶ Ø2 (R)	√ Ø3	<u></u> 04
12 s	29 s	12 s	47 s
▲ Ø5	Ø6 (R)		₩ Ø8
12 s	29 s	12 s	47 s

Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑	1	- ሽ	↑		1
Traffic Vol, veh/h	612	24	9	326	14	5
Future Vol, veh/h	612	24	9	326	14	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	225	275	-	0	0
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	665	26	10	354	15	5

Major1	Major2	Minor1	
0	0 691	0 1039	665
-		- 665	-
-		- 374	-
-	- 4.12	- 6.42	6.22
-		- 5.42	-
-		- 5.42	-
-	- 2.218	- 3.518	3.318
-	- 904	- 255	460
-		- 511	-
-		- 696	-
-	-	-	
· -	- 904	- 252	460
· _		- 252	-
-		- 511	-
-		- 688	-
EB	WB	NB	
0	0.2	18.3	
	0 	0 0 691 4.12 2.218 - 2.218 	0 0 691 0 1039 - - - 665 - - 374 - - 4.12 - - - 4.12 - - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.42 - - 5.13 - - 904 255 - - - 696 - - 904 252 - - - 511 - - - 511 - - - 688 U U - - EB WB NB

С HCM LOS

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	252	460	-	-	904	-
HCM Lane V/C Ratio	0.06	0.012	-	-	0.011	-
HCM Control Delay (s)	20.2	12.9	-	-	9	-
HCM Lane LOS	С	В	-	-	А	-
HCM 95th %tile Q(veh)	0.2	0	-	-	0	-

Int Delay, s/veh	0.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	1	٦	1	٦	1
Traffic Vol, veh/h	573	45	21	309	26	12
Future Vol, veh/h	573	45	21	309	26	12
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	225	275	-	0	0
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	623	49	23	336	28	13

Major/Minor	Major1	Major2	Minor1	
Conflicting Flow All	0	0 672	0 1005	623
Stage 1	-		- 623	-
Stage 2	-		- 382	-
Critical Hdwy	-	- 4.12	- 6.42	6.22
Critical Hdwy Stg 1	-		- 5.42	-
Critical Hdwy Stg 2	-		- 5.42	-
Follow-up Hdwy	-	- 2.218	- 3.518	
Pot Cap-1 Maneuver	· -	- 919	- 268	486
Stage 1	-		- 535	-
Stage 2	-		- 690	-
Platoon blocked, %	-	-	-	
Mov Cap-1 Maneuve		- 919	- 261	486
Mov Cap-2 Maneuve	er -		- 261	-
Stage 1	-		- 535	-
Stage 2	-		- 673	-
Approach	EB	WB	NB	
HCM Control Delay,		0.6	18	
HCM LOS	5	0.0	C	

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)	261	486	-	-	919	-	
HCM Lane V/C Ratio	0.108	0.027	-	-	0.025	-	
HCM Control Delay (s)	20.5	12.6	-	-	9	-	
HCM Lane LOS	С	В	-	-	А	-	
HCM 95th %tile Q(veh)	0.4	0.1	-	-	0.1	-	

Timings			
4: Coal Creek Blvd/County	Line Road	& Ara	pahoe Road

	٦	→	4	-	•	Ť	1	ţ	~
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	۲	¢Î		4	<u>۲</u>	el 🕴		र्स	1
Traffic Volume (vph)	381	1	2	1	126	490	2	355	203
Future Volume (vph)	381	1	2	1	126	490	2	355	203
Turn Type	pm+pt	NA	Perm	NA	pm+pt	NA	Perm	NA	Perm
Protected Phases	7	4		8	5	2		6	
Permitted Phases	4		8		2		6		6
Detector Phase	7	4	8	8	5	2	6	6	6
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	30.0	40.0	10.0	10.0	12.0	60.0	48.0	48.0	48.0
Total Split (%)	30.0%	40.0%	10.0%	10.0%	12.0%	60.0%	48.0%	48.0%	48.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0
Lead/Lag	Lead		Lag	Lag	Lead		Lag	Lag	Lag
Lead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)	25.8	25.8		5.2	64.2	64.2		51.5	51.5
Actuated g/C Ratio	0.26	0.26		0.05	0.64	0.64		0.52	0.52
v/c Ratio	0.90	0.38		0.05	0.24	0.43		0.39	0.23
Control Delay	37.5	2.5		39.6	9.2	11.3		17.5	3.0
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0	0.0
Total Delay	37.5	2.5		39.6	9.2	11.3		17.5	3.0
LOS	D	А		D	А	В		В	А
Approach Delay		25.3		39.6		10.8		12.2	
Approach LOS		С		D		В		В	
Intersection Summary									
Cycle Length: 100									
Actuated Cycle Length: 100									
Offset: 0 (0%), Referenced	to phase 2	:NBTL an	d 6:SBTL	, Start of	Green				
Natural Cycle: 60									
Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 0.90									
Intersection Signal Delay: 1					ntersectio				
Intersection Capacity Utilization	ation 85.0%)		[(CU Level	of Service	еE		
Analysis Period (min) 15									

Splits and Phases: 4: Coal Creek Blvd/County Line Road & Arapahoe Road

Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	^	- 11	1	٦	1
Traffic Vol, veh/h	52	522	514	13	8	31
Future Vol, veh/h	52	522	514	13	8	31
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	325	-	-	275	0	0
Veh in Median Storage	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	57	567	559	14	9	34

Major1	Ма	ajor2	Ν	1inor2	
573	0	-	0	957	280
-	-	-	-	559	-
-	-	-	-	398	-
4.14	-	-	-	6.84	6.94
-	-	-	-	5.84	-
-	-	-	-	5.84	-
2.22	-	-	-	3.52	3.32
996	-	-	-	256	717
-	-	-	-	536	-
-	-	-	-	647	-
	-	-	-		
	-	-	-	241	717
r -	-	-	-	241	-
-	-	-	-	505	-
-	-	-	-	647	-
EB		WB		SB	
0.0		3			
	573 - 4.14 - 2.22 996 - - - r 996 - -	573 0 4.14 - 2.22 - 996 - 	573 0 - 4.14 - 2.22 - 996 - 	573 0 - 0 - - - - 4.14 - - - - - - - 2.22 - - - 996 - - - - - - - 996 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<	573 0 - 0 957 - - - 559 - - - 398 4.14 - - 6.84 - - - 5.84 - - - 5.84 2.22 - - 3.52 996 - - 256 - - - 536 - - - 536 - - - 647 - - - 241 - - - 505 - - - 647 EB WB SB

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	SBLn2
Capacity (veh/h)	996	-	-	- 241	717
HCM Lane V/C Ratio	0.057	-	-	- 0.036	0.047
HCM Control Delay (s)	8.8	-	-	- 20.5	10.3
HCM Lane LOS	А	-	-	- C	В
HCM 95th %tile Q(veh)	0.2	-	-	- 0.1	0.1

Int Delay, s/veh	1.1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	1
Lane Configurations	٦	1	٦	- 11	- 11	1	1
Traffic Vol, veh/h	12	43	73	562	525	20	1
Future Vol, veh/h	12	43	73	562	525	20	1
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	:
RT Channelized	-	None	-	None	-	None	
Storage Length	0	0	350	-	-	275	1
Veh in Median Storage,	# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	13	47	79	611	571	22	

Major/Minor	Minor2	Ν	/lajor1	Maj	or2		
Conflicting Flow All	1035	286	593	0	-	0	
Stage 1	571	-	-	-	-	-	
Stage 2	464	-	-	-	-	-	
Critical Hdwy	6.84	6.94	4.14	-	-	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	2.22	-	-	-	
Pot Cap-1 Maneuver	228	711	979	-	-	-	
Stage 1	529	-	-	-	-	-	
Stage 2	599	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuve	r 210	711	979	-	-	-	
Mov Cap-2 Maneuve	r 210	-	-	-	-	-	
Stage 1	486	-	-	-	-	-	
Stage 2	599	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	13.2	1	0
HCM LOS	В		

Minor Lane/Major Mvmt	NBL	NBT	EBLn1	EBLn2	SBT	SBR
Capacity (veh/h)	979	-	210	711	-	-
HCM Lane V/C Ratio	0.081	-	0.062	0.066	-	-
HCM Control Delay (s)	9	-	23.3	10.4	-	-
HCM Lane LOS	А	-	С	В	-	-
HCM 95th %tile Q(veh)	0.3	-	0.2	0.2	-	-

Timings	
8: Coal Creek Blvd & Main Site Access/Old E. County	y Line Road

	۶	$\mathbf{\hat{z}}$	4	+	1	1	۲	1	Ļ	-	
Lane Group	EBL	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	٦	1	ሻ	eî 👘	ሻ	<u></u>	1	۳	- † †	1	
Traffic Volume (vph)	18	49	87	0	82	613	119	29	531	18	
Future Volume (vph)	18	49	87	0	82	613	119	29	531	18	
Turn Type	pm+pt	Perm	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases	7		3	8	5	2		1	6		
Permitted Phases	4	4	8		2		2	6		6	
Detector Phase	7	4	3	8	5	2	2	1	6	6	
Switch Phase											
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Total Split (s)	10.0	15.0	10.0	15.0	10.0	65.0	65.0	10.0	65.0	65.0	
Total Split (%)	10.0%	15.0%	10.0%	15.0%	10.0%	65.0%	65.0%	10.0%	65.0%	65.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	Мах	Мах	Мах	None	Min	Min	
Act Effct Green (s)	8.1	5.6	9.1	7.4	64.2	62.8	62.8	61.8	56.6	56.6	
Actuated g/C Ratio	0.09	0.07	0.11	0.09	0.75	0.74	0.74	0.72	0.66	0.66	
v/c Ratio	0.12	0.12	0.58	0.04	0.14	0.26	0.11	0.05	0.25	0.02	
Control Delay	35.8	0.5	51.4	0.2	4.0	6.4	1.5	3.7	7.1	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	35.8	0.5	51.4	0.2	4.0	6.4	1.5	3.7	7.1	0.1	
LOS	D	А	D	А	А	А	А	А	А	А	
Approach Delay				42.1		5.5			6.7		
Approach LOS				D		А			А		
Intersection Summary											
Cycle Length: 100											
Actuated Cycle Length: 85.4											
Natural Cycle: 45											
Control Type: Actuated-Unco	ordinated	1									
Maximum v/c Ratio: 0.58											
Intersection Signal Delay: 8.6)			Ir	ntersectio	n LOS: A					
Intersection Capacity Utilizati)		[(CU Level	of Service	A				
Analysis Period (min) 15											

Splits and Phases: 8: Coal Creek Blvd & Main Site Access/Old E. County Line Road

Ø1	1 g2	√ ø3	₽ Ø4
10 s	65 s	10 s	15 s
▲ ø5		▶ _{Ø7}	₩ Ø8
10 s	65 s	10 s	15 s

Int Delay, s/veh	0.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1	٦	- 11	- 11	1
Traffic Vol, veh/h	0	74	59	815	632	34
Future Vol, veh/h	0	74	59	815	632	34
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	380	-	-	275
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	80	64	886	687	37

Major/Minor	Minor2	Ν	/lajor1	Maj	or2	
Conflicting Flow All	-	344	724	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	4.14	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	0	652	874	-	-	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve		652	874	-	-	-
Mov Cap-2 Maneuve	۲ - r	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	11.3	0.6	0
HCM LOS	В		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	874	- 652	-	-
HCM Lane V/C Ratio	0.073	- 0.123	-	-
HCM Control Delay (s)	9.4	- 11.3	-	-
HCM Lane LOS	А	- B	-	-
HCM 95th %tile Q(veh)	0.2	- 0.4	-	-

	4	•	1	*	*	Ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1	1	•	1	ľ	•
Traffic Volume (vph)	62	49	476	107	83	511
Future Volume (vph)	62	49	476	107	83	511
Turn Type	Prot	pt+ov	NA	Perm	pm+pt	NA
Protected Phases	8	81	2		1	6
Permitted Phases				2	6	
Detector Phase	8	81	2	2	1	6
Switch Phase						
Minimum Initial (s)	5.0		5.0	5.0	5.0	5.0
Minimum Split (s)	23.0		23.0	23.0	10.0	23.0
Total Split (s)	30.0		58.0	58.0	12.0	70.0
Total Split (%)	30.0%		58.0%	58.0%	12.0%	70.0%
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	1.5		1.5	1.5	1.5	1.5
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0		5.0	5.0	5.0	5.0
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?			Yes	Yes	Yes	
Recall Mode	None		C-Max	C-Max	None	C-Max
Act Effct Green (s)	9.2	18.6	74.5	74.5	83.0	84.0
Actuated g/C Ratio	0.09	0.19	0.74	0.74	0.83	0.84
v/c Ratio	0.41	0.16	0.37	0.10	0.13	0.35
Control Delay	49.8	9.6	3.6	0.6	1.4	1.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	49.8	9.6	3.6	0.6	1.4	1.7
LOS	D	А	А	А	А	А
Approach Delay	32.0		3.1			1.6
Approach LOS	С		А			А
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 10	0					
Offset: 0 (0%), Referenced		NBT and	6:SBTL	Start of C	Green	
Natural Cycle: 60						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.41						
Intersection Signal Delay:	4.9			Ir	ntersectio	n LOS: A
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15					2 20.01	

Splits and Phases: 10: N. 119th Street & West Full Movement Site Access

Int Delay, s/veh	3.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	1	1	1	Y	
Traffic Vol, veh/h	64	84	68	1	1	38
Future Vol, veh/h	64	84	68	1	1	38
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	150	-	-	150	0	-
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	70	91	74	1	1	41

Major/Minor	Major1	N	Inior?		Minor2	
	Major1		lajor2			74
Conflicting Flow All	75	0	-	0	305	74
Stage 1	-	-	-	-	74	-
Stage 2	-	-	-	-	231	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1524	-	-	-	687	988
Stage 1	-	-	-	-	949	-
Stage 2	-	-	-	-	807	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1524	-	-	-	655	988
Mov Cap-2 Maneuver		-	-	-	655	-
Stage 1	-	-	-	-	905	-
Stage 2	-	-	-	-	807	-
Approach	EB		WB		SB	
HCM Control Delay, s	3.2		0		8.9	
HCM LOS					А	
Minor Long/Major Mur	nt.	EDI	ГДТ			
Minor Lane/Major Mvr	Ш	EBL	EBT	WBT	WBR S	
Capacity (veh/h)		1524	-	-	-	975
HCM Lane V/C Ratio		0.046	-	-	-	0.043
HCM Control Delay (s)	7.5	-	-	-	8.9
HCM Lane LOS		A	-	-	-	A
HCM 95th %tile Q(ver	1)	0.1	-	-	-	0.1

Int Delay, s/veh	4.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦.	↑	↑	1	<u>۲</u>	1
Traffic Vol, veh/h	54	31	36	26	16	33
Future Vol, veh/h	54	31	36	26	16	33
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	150	-	-	150	0	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	59	34	39	28	17	36

Major/Minor	Major1	Ма	ajor2	Ν	Minor2		
Conflicting Flow All	67	0	-	0	191	39	
Stage 1	-	-	-	-	39	-	
Stage 2	-	-	-	-	152	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518		
Pot Cap-1 Maneuver	1535	-	-	-	798	1033	
Stage 1	-	-	-	-	983	-	
Stage 2	-	-	-	-	876	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver		-	-	-	768	1033	
Mov Cap-2 Maneuver	-	-	-	-	768	-	
Stage 1	-	-	-	-	946	-	
Stage 2	-	-	-	-	876	-	
Approach	EB		WB		SB		
HCM Control Delay, s	4.7		0		9		
HCM LOS					А		

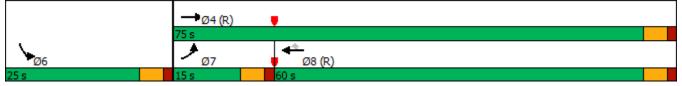
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	SBLn2
Capacity (veh/h)	1535	-	-	- 768	1033
HCM Lane V/C Ratio	0.038	-	-	- 0.023	0.035
HCM Control Delay (s)	7.4	-	-	- 9.8	8.6
HCM Lane LOS	А	-	-	- A	А
HCM 95th %tile Q(veh)	0.1	-	-	- 0.1	0.1

Int Delay, s/veh	0.3						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	1	1	٦	1	
Traffic Vol, veh/h	0	17	565	51	25	549	1
Future Vol, veh/h	0	17	565	51	25	549	1
Conflicting Peds, #/hr	0	0	0	0	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free	:
RT Channelized	-	None	-	None	-	None	ł
Storage Length	-	0	-	225	250	-	
Veh in Median Storage	,# 0	-	0	-	-	0	1
Grade, %	0	-	0	-	-	0	1
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	18	614	55	27	597	

Major/Minor	Minor1	Ν	Major1	Ν	Najor2			
Conflicting Flow All	-	614	0	0	669	0		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Critical Hdwy	-	6.22	-	-	4.12	-		
Critical Hdwy Stg 1	-	-	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-	-	-		
Follow-up Hdwy	-	3.318	-	-	2.218	-		
Pot Cap-1 Maneuver	0	*618	-	-	893	-		
Stage 1	0	-	-	-	-	-		
Stage 2	0	-	-	-	-	-		
Platoon blocked, %		1	-	-	1	-		
Mov Cap-1 Maneuver		*618	-	-	893	-		
Mov Cap-2 Maneuver	-	-	-	-	-	-		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Approach	WB		NB		SB			
HCM Control Delay, s	11		0		0.4			
HCM LOS	В							
Minor Lane/Major Mvr	nt	NBT	NBRW	/BLn1	SBL	SBT		
Capacity (veh/h)		-	-	618	893	-		
HCM Lane V/C Ratio		-	-	0.03	0.03	-		
HCM Control Delay (s	5)	-	-	11	9.2	-		
HCM Lane LOS		-	-	В	А	-		
HCM 95th %tile Q(veh	ר)	-	-	0.1	0.1	-		
Notes								
· Volumo ovcoode ce	nacity	¢, Da		oode 20	10c	LI Comp	utation Not Dofined	*: All major volumo in platoon

-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Timings	
14: N. 119th Street & State Highway 7 (Baseline Road))


	≯	+	4	ł	•	1	Ť	1	1	ţ	∢	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	ĥ	۲.	•	1	۲	•	1	۲.	•	1	
Traffic Volume (vph)	161	776	238	532	148	30	307	452	291	173	85	
Future Volume (vph)	161	776	238	532	148	30	307	452	291	173	85	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free	
Protected Phases	7	4	3	8		5	2		1	6		
Permitted Phases	4		8		8	2		Free	6		Free	
Detector Phase	7	4	3	8	8	5	2		1	6		
Switch Phase												
Vinimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0		
Vinimum Split (s)	10.0	23.0	10.0	23.0	23.0	10.0	22.0		10.0	23.0		
Fotal Split (s)	22.0	46.0	14.0	38.0	38.0	12.0	23.0		17.0	28.0		
Fotal Split (%)	22.0%	46.0%	14.0%	38.0%	38.0%	12.0%	23.0%		17.0%	28.0%		
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5		
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5		1.5	1.5		
ost Time Adjust (s)	-2.0	-3.0	-2.0	2.0	2.0	2.0	-2.0		-2.0	-2.0		
otal Lost Time (s)	3.0	2.0	3.0	7.0	7.0	7.0	3.0		3.0	3.0		
_ead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag		
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes		
Recall Mode	None	C-Max	None	C-Max	C-Max	None	None		None	None		
Act Effct Green (s)	54.7	44.0	53.6	38.4	38.4	20.0	19.6	100.0	36.6	29.5	100.0	
Actuated g/C Ratio	0.55	0.44	0.54	0.38	0.38	0.20	0.20	1.00	0.37	0.30	1.00	
//c Ratio	0.42	1.02	0.87	0.76	0.21	0.12	0.86	0.29	0.91	0.32	0.05	
Control Delay	13.7	66.3	49.2	46.6	11.9	24.8	62.0	0.5	54.1	25.7	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	13.7	66.3	49.2	46.6	11.9	24.8	62.0	0.5	54.1	25.7	0.1	
OS	В	E	D	D	В	С	E	А	D	С	А	
Approach Delay		57.6		41.7			25.3			36.7		
Approach LOS		E		D			С			D		
ntersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 0 (0%), Referenced to	o phase 4	:EBTL an	d 8:WBTI	L, Start of	f Green							
Vatural Cycle: 90												
Control Type: Actuated-Coor	dinated											
Vaximum v/c Ratio: 1.02												
ntersection Signal Delay: 41				li	ntersectio	n LOS: D						
ntersection Capacity Utilizat	ion 102.1	%		[(CU Level	of Service	eG					
Analysis Period (min) 15												

Splits and Phases: 14: N. 119th Street & State Highway 7 (Baseline Road)

Ø1		1 Ø2	√ Ø3	→ _{04 (♥)}	
17 s		23 s	14 s	46 s	
▲ Ø5		06		🗸 🗘 🖉 Ø8 (R)	
12 s	28 s		22 s	38 s	

	٦	→	-	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ኘኘ	†	†	1	ኘኘ	1
Traffic Volume (vph)	343	1166	708	530	501	205
Future Volume (vph)	343	1166	708	530	501	205
Turn Type	Prot	NA	NA	Perm	Prot	Free
Protected Phases	7	4	8		6	
Permitted Phases				8		Free
Detector Phase	7	4	8	8	6	
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	10.0	23.0	23.0	23.0	23.0	
Total Split (s)	15.0	75.0	60.0	60.0	25.0	
Total Split (%)	15.0%	75.0%	60.0%	60.0%	25.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Max	C-Max	C-Max	None	
Act Effct Green (s)	12.1	72.3	56.1	56.1	19.7	100.0
Actuated g/C Ratio	0.12	0.72	0.56	0.56	0.20	1.00
v/c Ratio	0.87	0.88	0.71	0.49	0.78	0.14
Control Delay	50.7	21.3	20.9	2.6	46.7	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	50.7	21.3	20.9	2.6	46.7	0.2
LOS	D	С	С	А	D	А
Approach Delay		28.1	13.0		33.2	
Approach LOS		С	В		С	
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100)					
Offset: 0 (0%), Referenced		:EBT and	8:WBT	Start of G	reen	
Natural Cycle: 90			0.11017			
Control Type: Actuated-Coc	ordinated					
Maximum v/c Ratio: 0.88						
Intersection Signal Delay: 2	3.7			Ir	ntersection	n LOS: C
Intersection Capacity Utiliza)				of Service
Analysis Period (min) 15						2. 0011100

Splits and Phases: 15: State Highway 7 (Baseline Road) & Coal Creek Blvd

Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		1	1	1		1
Traffic Vol, veh/h	0	1667	1223	3	0	10
Future Vol, veh/h	0	1667	1223	3	0	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Yield	-	None
Storage Length	-	-	-	200	-	0
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	1812	1329	3	0	11

Major/Minor N	Major1	Ν	/lajor2	Ν	/linor2	
Conflicting Flow All	-	0	-	0	-	1329
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.318
Pot Cap-1 Maneuver	0	-	-	-	0	189
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	189
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		25.2	
HCM LOS					D	
Minor Lane/Major Mvm	+	EBT	WBT	WBR S	DIn1	
	<u>IL</u>	EDI	VVDI			
Capacity (veh/h)		-	-	-	189	
HCM Lane V/C Ratio		-	-		0.058	
HCM Control Delay (s)		-	-	-	25.2	
HCM Lane LOS		-	-	-	D	
HCM 95th %tile Q(veh)		-	-	-	0.2	

Timings 1: N. 119th Street & Arapahoe Road

	٦	-	*	4	+	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	- ††	1	ሻ	- ††	1	ሻ	- ††	1	ሻ	- ††	1
Traffic Volume (vph)	40	175	152	150	650	20	241	113	26	25	396	175
Future Volume (vph)	40	175	152	150	650	20	241	113	26	25	396	175
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov
Protected Phases	7	4	5	3	8	1	5	2	3	1	6	7
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	7	4	5	3	8	1	5	2	3	1	6	7
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	12.0	41.0	12.0	12.0	41.0	12.0	12.0	35.0	12.0	12.0	35.0	12.0
Total Split (%)	12.0%	41.0%	12.0%	12.0%	41.0%	12.0%	12.0%	35.0%	12.0%	12.0%	35.0%	12.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max	None	None	C-Max	None
Act Effct Green (s)	32.0	25.4	42.2	32.8	25.8	37.1	52.2	45.5	57.5	42.1	35.8	47.4
Actuated g/C Ratio	0.32	0.25	0.42	0.33	0.26	0.37	0.52	0.46	0.58	0.42	0.36	0.47
v/c Ratio	0.20	0.20	0.21	0.37	0.75	0.03	0.50	0.07	0.03	0.05	0.33	0.23
Control Delay	20.5 0.0	28.6	3.1 0.0	24.2 0.0	39.4 0.0	0.1	12.4 0.0	11.0 0.0	2.0	14.4 0.0	25.7 0.0	8.7 0.0
Queue Delay	20.5	0.0 28.6	0.0 3.1	24.2	39.4		12.4	11.0	0.0		25.7	0.0 8.7
Total Delay LOS	20.5 C	28.0 C	3.1 A	24.2 C	39.4 D	0.1 A	12.4 B	II.0 B	2.0 A	14.4 B	25.7 C	8.7 A
	C	17.2	A	C	35.7	A	Б	ы 11.3	A	Б	20.2	A
Approach Delay Approach LOS		17.2 B			35.7 D			11.3 B			20.2 C	
••		D			D			D			C	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 84 (84%), Reference	d to phase	e 2:NBTL	and 6:SB	TL, Start	of Green							
Natural Cycle: 60												
Control Type: Actuated-Coo	rdinated											
Maximum v/c Ratio: 0.75												
Intersection Signal Delay: 24						n LOS: C	_					
Intersection Capacity Utilizat	tion 63.1%)		[(JU Level	of Service	ЭВ					
Analysis Period (min) 15												

Splits and Phases: 1: N. 119th Street & Arapahoe Road

Ø1	Ø2 (R)	€ ¶Ø3	₩ 04
12 s	35 s	12 s	41 s
\$ Ø5	∲Ø6 (R)	₽ Ø7	◆ ▼ Ø8
12 s	35 s	12 s	41 s

Timings			
4: Coal Creek Blvd/County	/ Line Road	& Arap	bahoe Road

	۶	+	4	Ļ	<	1	×	ţ	~	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ሻሻ	¢Î		\$	7	∱ î≽	<u>۲</u>	<u></u>	1	
Traffic Volume (vph)	116	1	2	1	250	375	2	540	500	
Future Volume (vph)	116	1	2	1	250	375	2	540	500	
Turn Type	Prot	NA	Perm	NA	pm+pt	NA	Perm	NA	pt+ov	
Protected Phases	7	4		8	5	2		6	67	
Permitted Phases			8		2		6			
Detector Phase	7	4	8	8	5	2	6	6	67	
Switch Phase										
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		
Total Split (s)	20.0	30.0	10.0	10.0	10.0	70.0	60.0	60.0		
Total Split (%)	20.0%	30.0%	10.0%	10.0%	10.0%	70.0%	60.0%	60.0%		
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		
Lead/Lag	Lead		Lag	Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes	Yes		
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max		
Act Effct Green (s)	9.3	11.7		5.9	78.3	78.3	65.5	65.5	79.8	
Actuated g/C Ratio	0.09	0.12		0.06	0.78	0.78	0.66	0.66	0.80	
v/c Ratio	0.38	0.30		0.05	0.41	0.14	0.00	0.25	0.38	
Control Delay	26.5	4.0		38.2	6.1	3.1	8.5	8.3	1.2	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	26.5	4.0		38.2	6.1	3.1	8.5	8.3	1.2	
LOS	С	А		D	А	А	А	А	А	
Approach Delay		18.0		38.2		4.3		4.9		
Approach LOS		В		D		А		А		
Intersection Summary										
Cycle Length: 100										
Actuated Cycle Length: 100)									
Offset: 62 (62%), Reference		2:NBTL	and 6:SB	TL, Start	of Green					
Natural Cycle: 50										
Control Type: Actuated-Coc	ordinated									
Maximum v/c Ratio: 0.41										
Intersection Signal Delay: 6	.1			Ir	ntersectio	n LOS: A				
Intersection Capacity Utiliza	ition 61.5%)		[(CU Level	of Servic	e B			
Analysis Period (min) 15										
analysis Pendu (IIIII) 15										

Splits and Phases: 4: Coal Creek Blvd/County Line Road & Arapahoe Road

≪¶ Ø2 (R) ♥	→ Ø4	
70 s	30 s	
▲ Ø5 🖡 ♣ Ø6 (R)	₽ Ø7	₹ø8
10 s 60 s	20 s 10)s

Timings	
8: Coal Creek Blvd & Main Site Access/Old E. County	y Line Road

Lane Configurations Image: Configuration in the image: Control in the image: Control in the image: Control in the image: Control Delay Image: Control in the image: Control Delay Image: Control in the image: Control Delay Image: Control Delay <thimage: control="" delay<="" th=""> Image: Control Delay</thimage:>	∢	\mathbf{r}	< ·	←	1	Ť	1	1	ŧ	- ✓	
Traffic Volume (vph) 4 19 10 0 6 Future Volume (vph) 4 19 10 0 6 Future Volume (vph) 4 19 10 0 6 Future Volume (vph) 4 19 10 0 6 Furn Type pm+pt Perm pm+pt NA pm+pt Protected Phases 7 4 3 8 5 Switch Phase 7 4 3 8 5 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Total Split (s) 10.0 10.0 10.0 10.0 10.0 10.0 Total Split (s) 10.0% 20.0% 15.0% 25.0% 10.0% 25.0 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lead/Lag Lead Lag Lead Lag Lead Lag Lead Lag	WBL	EBR	WBL V	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Traffic Volume (vph) 4 19 10 0 6 Future Volume (vph) 4 19 10 0 6 Turn Type pm+pt Perm pm+pt NA pm+pt Protected Phases 7 3 8 5 Permitted Phases 4 4 8 2 Detector Phase 7 4 3 8 5 Switch Phase 10.0 10.0 10.0 10.0 10.0 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 10.0 20.0 15.0 25.0 10.0 25 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lead/Lag Lead Lag Lead Lag Lead Lag Lead Lag Lag Lad Lag Lad Lag Lad Lag Lad Lag	ľ	1	ľ	el el	ľ	<u></u>	1	ľ	<u></u>	1	
Turn Type pm+pt Perm pm+pt NA pm+pt Protected Phases 7 3 8 5 Permitted Phases 4 4 8 2 Detector Phase 7 4 3 8 5 Switch Phase 7 4 3 8 5 Minimum Initial (s) 5.0 5.0 5.0 5.0 10.0	10	19	10		6	620	25	5	605	1	
Protected Phases 7 3 8 5 Permitted Phases 4 4 8 2 Detector Phase 7 4 3 8 5 Switch Phase 7 4 3 8 5 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 10.0 10.0 10.0 10.0 10.0 Total Split (s) 10.0% 20.0% 15.0% 25.0% 10.0% 55 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.0 </td <td>10</td> <td>19</td> <td>10</td> <td>0</td> <td>6</td> <td>620</td> <td>25</td> <td>5</td> <td>605</td> <td>1</td> <td></td>	10	19	10	0	6	620	25	5	605	1	
Protected Phases 7 3 8 5 Permitted Phases 4 4 8 2 Detector Phase 7 4 3 8 5 Switch Phase 7 4 3 8 5 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 10.0 10.0 10.0 10.0 10.0 Total Split (s) 10.0% 20.0% 15.0% 25.0% 10.0% 55 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.0 </td <td>m+pt</td> <td>Perm</td> <td>pm+pt</td> <td>NA</td> <td>pm+pt</td> <td>NA</td> <td>Perm</td> <td>pm+pt</td> <td>NA</td> <td>Perm</td> <td></td>	m+pt	Perm	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	Perm	
Detector Phase 7 4 3 8 5 Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 10.0 1	3		3	8	5	2		1	6		
Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 Minimum Split (s) 10.0 10.0 10.0 10.0 Total Split (s) 10.0% 20.0% 15.0% 25.0% 10.0% Total Split (%) 10.0% 20.0% 15.0% 25.0% 10.0% 55 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0	8	4	8		2		2	6		6	
Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 10.0 10.0 10.0 10.0 10.0 10.0 Total Split (s) 10.0% 20.0% 15.0% 25.0% 10.0% 55 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.0	3	4	3	8	5	2	2	1	6	6	
Minimum Split (s) 10.0 10.0 10.0 10.0 10.0 Total Split (s) 10.0% 20.0% 15.0% 25.0% 10.0% 55 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0											
Total Split (s) 10.0 20.0 15.0 25.0 10.0 9 Total Split (%) 10.0% 20.0% 15.0% 25.0% 10.0% 55 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Total Split (%) 10.0% 20.0% 15.0% 25.0% 10.0% 55 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead Lag Lead Lag Lead Lag Lead Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Yes Yes Recall Mode None None None None None None None C- Actuated g/C Ratio 0.06 0.06 0.08 0.01 0.01 0 0 0.0 0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead Lag Lead Lag Lead Lead-Lag Optimize? Yes Yes Yes Yes Recall Mode None None None None None Actuated g/C Ratio 0.06 0.06 0.08 0.06 0.87 0 V/c Ratio 0.04 0.05 0.08 0.01 0.01 0 Control Delay 39.5 0.2 40.2 0.0 2.2 0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0 Costrol Delay 39.5 0.2 40.2 0.0 2.2 0 2.2 0 2.2 0 2.2 0 2.2 0 2.2 0.0 2.2						55.0	55.0	10.0	55.0	55.0	
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead Lag Lead Lag Lead Lead-Lag Optimize? Yes Yes Yes Yes Yes Recall Mode None None None None None C- Act Effect Green (s) 6.2 5.5 7.7 5.9 87.4 8 Actuated g/C Ratio 0.06 0.06 0.08 0.06 0.87 0 V/c Ratio 0.04 0.05 0.08 0.01 0.01 0 Control Delay 39.5 0.2 40.2 0.0 2.2 0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0 Total Delay 39.5 0.2 40.2 0.0 2.2 0 2.2 0 2.2 0 2.2 0.0 2.2 0	5.0%	20.0%	15.0% 25	25.0%	10.0%	55.0%	55.0%	10.0%	55.0%	55.0%	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead Lag Lead Lag Lead Lead-Lag Optimize? Yes Yes Yes Yes Yes Recall Mode None None None None None None None Act Effect Green (s) 6.2 5.5 7.7 5.9 87.4 8 Actuated g/C Ratio 0.06 0.06 0.08 0.06 0.87 0 V/c Ratio 0.04 0.05 0.08 0.01 0.01 0 0 Control Delay 39.5 0.2 40.2 0.0 2.2 0 <td>3.0</td> <td></td>	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead Lag Lead Lag Lead Lead-Lag Optimize? Yes Yes Yes Yes Yes Recall Mode None None None None None None None Act Effct Green (s) 6.2 5.5 7.7 5.9 87.4 8 Actuated g/C Ratio 0.06 0.06 0.08 0.06 0.87 0 Vc Ratio 0.04 0.05 0.08 0.01 0.01 0 Control Delay 39.5 0.2 40.2 0.0 2.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 39.5 0.2 40.2 0.0 2.2 LOS D A D A A Approach LOS C C Intersection Summary C Cycle Length: 100 Actuated Cycle Length: 100 Green Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lead/Lag Lead Lag Lad Lad Lag Lad Lad <thlad< th=""> <thlad< th=""> Lad</thlad<></thlad<>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Lead-Lag Optimize? Yes	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Recall Mode None None None None None C- Act Effct Green (s) 6.2 5.5 7.7 5.9 87.4 4 Actuated g/C Ratio 0.06 0.06 0.08 0.06 0.87 0 V/c Ratio 0.04 0.05 0.08 0.01 0.01 0 Control Delay 39.5 0.2 40.2 0.0 2.2 0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 39.5 0.2 40.2 0.0 2.2 0.0 2.2 0.0 2.2 0.0	Lead	Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lag	
Act Effct Green (s) 6.2 5.5 7.7 5.9 87.4 8 Actuated g/C Ratio 0.06 0.06 0.08 0.06 0.87 0 v/c Ratio 0.04 0.05 0.08 0.01 0.01 0 Control Delay 39.5 0.2 40.2 0.0 2.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 39.5 0.2 40.2 0.0 2.2 LOS D A D A A Approach Delay 27.6 C 10 10 10 Actuated Cycle Length: 100 C C 10 10 10 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 45 10 10 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.21 10 10 10 10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Actuated g/C Ratio 0.06 0.06 0.08 0.06 0.87 0 v/c Ratio 0.04 0.05 0.08 0.01 0.01 0 Control Delay 39.5 0.2 40.2 0.0 2.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 39.5 0.2 40.2 0.0 2.2 LOS D A D A A Approach Delay 27.6 C Approach LOS C Intersection Summary C C C C Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 45 C Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.21 C C	Vone	None	None N	None	None	C-Max	C-Max	None	C-Max	C-Max	
v/c Ratio 0.04 0.05 0.08 0.01 0.01 0 Control Delay 39.5 0.2 40.2 0.0 2.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 39.5 0.2 40.2 0.0 2.2 LOS D A D A A Approach Delay 27.6 C D A A Approach LOS C C C D A A Approach LOS C C C C D A A A Approach LOS C	7.7	5.5	7.7	5.9	87.4	89.2	89.2	87.4	89.2	89.2	
Control Delay 39.5 0.2 40.2 0.0 2.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 39.5 0.2 40.2 0.0 2.2 LOS D A D A A Approach Delay 27.6 27.6 27.6 Approach LOS C C 10 Intersection Summary C C 10 Actuated Cycle Length: 100 C 0.0 10 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 45 10 Control Type: Actuated-Coordinated Waximum v/c Ratio: 0.21 10 10	80.0	0.06	0.08	0.06	0.87	0.89	0.89	0.87	0.89	0.89	
Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 39.5 0.2 40.2 0.0 2.2 LOS D A D A A Approach Delay 27.6 27.6 27.6 Approach LOS C C 10 Intersection Summary C C 10 Cycle Length: 100 C C 10 Actuated Cycle Length: 100 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.21 10	80.0	0.05	0.08 (0.01	0.01	0.21	0.02	0.01	0.20	0.00	
Total Delay39.50.240.20.02.2LOSDADAAApproach Delay27.6Approach LOSCIntersection SummaryCycle Length: 100Actuated Cycle Length: 100Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of GreenNatural Cycle: 45Control Type: Actuated-CoordinatedMaximum v/c Ratio: 0.21	40.2	0.2	40.2	0.0	2.2	2.3	0.0	4.2	4.0	0.0	
LOS D A D A A Approach Delay 27.6 Approach LOS C Intersection Summary Cycle Length: 100 Actuated Cycle Length: 100 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LOS D A D A A Approach Delay 27.6 Approach LOS C Intersection Summary Cycle Length: 100 Actuated Cycle Length: 100 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.21	40.2	0.2	40.2	0.0	2.2	2.3	0.0	4.2	4.0	0.0	
Approach LOS C Intersection Summary Cycle Length: 100 Actuated Cycle Length: 100 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.21	D	А	D	А	А	А	А	А	А	А	
Approach LOS C Intersection Summary Cycle Length: 100 Actuated Cycle Length: 100 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.21				27.6		2.2			4.0		
Cycle Length: 100 Actuated Cycle Length: 100 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.21				С		А			А		
Cycle Length: 100 Actuated Cycle Length: 100 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.21											
Actuated Cycle Length: 100 Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.21											
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.21											
Natural Cycle: 45 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.21	:SBTL	NBTL and	nd 6:SBTL, St	Start of G	Green						
Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.21											
Maximum v/c Ratio: 0.21											
Intersection Signal Delay: 3.5 Intersection LC				Inte	ersection	n LOS: A					
Intersection Capacity Utilization 37.6% ICU Level of S)					eΑ				
Analysis Period (min) 15					2 20101	2. 201100					

Splits and Phases: 8: Coal Creek Blvd & Main Site Access/Old E. County Line Road

Ø1	Ø2 (R)	√ Ø3		₽ 04	
10 s	55 s	15 s		20 s	
▲ ø5	Ø6 (R)	∕×	¥,	08	
10 s	55 s	10 s	25 s		

Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1	٦	- 11	- 11	1
Traffic Vol, veh/h	0	20	0	650	635	0
Future Vol, veh/h	0	20	0	650	635	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	380	-	-	275
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	21	0	684	668	0

Major/Minor	Minor2	1	Vajor1	Ν	lajor2				
Conflicting Flow All	-	334	668	0	-	0			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Critical Hdwy	-	6.94	4.14	-	-	-			
Critical Hdwy Stg 1	-	-	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-	-	-			
Follow-up Hdwy	-	3.32	2.22	-	-	-			
Pot Cap-1 Maneuver	0	*831	*1244	-	-	-			
Stage 1	0	-	-	-	-	-			
Stage 2	0	-	-	-	-	-			
Platoon blocked, %		1	1	-	-	-			
Mov Cap-1 Maneuver		*831	*1244	-	-	-			
Mov Cap-2 Maneuver	-	-	-	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Approach	EB		NB		SB				
HCM Control Delay, s	9.4		0		0				
HCM LOS	А								
Minor Lane/Major Mvr	nt	NBL	NBT E	EBLn1	SBT	SBR			
Capacity (veh/h)		* 1244	-	831	-	-			
HCM Lane V/C Ratio		-	-	0.025	-	-			
HCM Control Delay (s	.)	0	-	9.4	-	-			
HCM Lane LOS		A	-	А	-	-			
HCM 95th %tile Q(veh	ו)	0	-	0.1	-	-			
Notes									
~: Volume exceeds ca	apacity	\$: De	elay exc	eeds 30	0s	+: Comp	utation Not Defined	*: All major volume in platoon	

	4	×.	t	1	1	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኘ	1	† †	1	ሻ	††
Traffic Volume (vph)	6	10	370	2	3	695
Future Volume (vph)	6	10	370	2	3	695
Turn Type	Prot	Prot	NA	Perm	pm+pt	NA
Protected Phases	8	8	2		1	6
Permitted Phases				2	6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	30.0	30.0	58.0	58.0	12.0	70.0
Total Split (%)	30.0%	30.0%	58.0%	58.0%	12.0%	70.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?			Yes	Yes	Yes	
Recall Mode	None	None	C-Max	C-Max	None	C-Max
Act Effct Green (s)	6.0	6.0	91.2	91.2	90.3	93.3
Actuated g/C Ratio	0.06	0.06	0.91	0.91	0.90	0.93
v/c Ratio	0.06	0.10	0.12	0.00	0.00	0.22
Control Delay	45.0	24.6	0.6	0.5	0.7	0.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	45.0	24.6	0.6	0.5	0.7	0.5
LOS	D	С	А	А	А	А
Approach Delay	31.8		0.6			0.5
Approach LOS	С		А			А
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100						
Offset: 32 (32%), Reference		e 2:NBT a	nd 6:SBT	L, Start o	f Green	
Natural Cycle: 40						
Control Type: Actuated-Coo	rdinated					
Maximum v/c Ratio: 0.22						
Intersection Signal Delay: 1.	0			lr	ntersectio	n LOS: A
Intersection Capacity Utilization)				of Service
Analysis Period (min) 15						

Splits and Phases: 10: N. 119th Street & West Full Movement Site Access

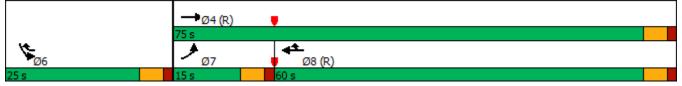
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	- 11	1	٦	^
Traffic Vol, veh/h	0	20	352	25	25	676
Future Vol, veh/h	0	20	352	25	25	676
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	225	250	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	21	371	26	26	712

Major/Minor	Minor1	Ν	/lajor1	1	Major2	
Conflicting Flow All	-	186	0	0	397	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	4.14	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	0	*954	-	-	1376	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %		1	-	-	1	-
Mov Cap-1 Maneuve		*954	-	-	1376	-
Mov Cap-2 Maneuve	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	s 8.9		0		0.3	
HCM LOS	А					
Minor Long/Major Mu	una t	NDT		/DI1	CDI	СПТ
Minor Lane/Major Mv	mt	NBT	NBRW		SBL	SBT
Capacity (veh/h)		-	-	954	1376	-
HCM Lane V/C Ratio		-			0.019	-
HCM Control Delay (S)	-	-	8.9	7.7	-
HCM Lane LOS	1-1	-	-	A	A	-
HCM 95th %tile Q(ve	n)	-	-	0.1	0.1	-

Notes

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Timings	
14: N. 119th Street & State Highway 7 (Baseline Road)


	≯	-	$\mathbf{\hat{z}}$	4	+	•	1	t	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘኘ	<u></u>	1	ኘ	<u></u>	1	ሻሻ	<u></u>	1	ካካ	<u></u>	1
Traffic Volume (vph)	61	387	70	566	841	175	55	141	220	100	464	112
Future Volume (vph)	61	387	70	566	841	175	55	141	220	100	464	112
Turn Type	Prot	NA	pm+ov	Prot	NA	pm+ov	Prot	NA	Free	Prot	NA	Free
Protected Phases	7	4	5	3	8	1	5	2		1	6	
Permitted Phases			4			8			Free			Free
Detector Phase	7	4	5	3	8	1	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	10.0	23.0	10.0	10.0	23.0	10.0	10.0	23.0		10.0	23.0	
Total Split (s)	10.0	26.0	10.0	34.0	50.0	12.0	10.0	28.0		12.0	30.0	
Total Split (%)	10.0%	26.0%	10.0%	34.0%	50.0%	12.0%	10.0%	28.0%		12.0%	30.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	None	None	C-Max	None	None	None		None	None	
Act Effct Green (s)	8.6	36.3	46.3	24.7	54.4	66.3	7.0	18.2	100.0	8.8	22.0	100.0
Actuated g/C Ratio	0.09	0.36	0.46	0.25	0.54	0.66	0.07	0.18	1.00	0.09	0.22	1.00
v/c Ratio	0.22	0.32	0.09	0.70	0.46	0.17	0.24	0.23	0.15	0.35	0.63	0.07
Control Delay	44.4	26.1	0.8	54.4	13.3	0.4	46.7	34.2	0.2	41.6	33.7	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	44.4	26.1	0.8	54.4	13.3	0.4	46.7	34.2	0.2	41.6	33.7	0.1
LOS	D	С	А	D	В	А	D	С	А	D	С	А
Approach Delay		24.8			26.6			17.8			29.3	
Approach LOS		С			С			В			С	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 48 (48%), Reference	d to phase	e 4:EBT a	ind 8:WB	Γ, Start of	f Green							
Natural Cycle: 70												
Control Type: Actuated-Coor	rdinated											
Maximum v/c Ratio: 0.70												
Intersection Signal Delay: 25						n LOS: C						
Intersection Capacity Utilizat	ion 57.7%)		[(CU Level	of Service	e B					
Analysis Period (min) 15												

Splits and Phases: 14: N. 119th Street & State Highway 7 (Baseline Road)

Ø1	1 Ø2	√ Ø3	🛡 🐨 🗹 4 (R)
12 s	28 s	34 s	26 s
\$ Ø5	▼ Ø6	✓ Ø8 (R)	•
10 s 30)s	10 s 50 s	

	٨	-	+	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ካካ	††	<u></u>	1	ሻሻ	1
Traffic Volume (vph)	135	575	1350	515	405	250
Future Volume (vph)	135	575	1350	515	405	250
Turn Type	Prot	NA	NA	pt+ov	Prot	Free
Protected Phases	7	4	8	86	6	
Permitted Phases						Free
Detector Phase	7	4	8	86	6	
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0		5.0	
Minimum Split (s)	10.0	23.0	23.0		23.0	
Total Split (s)	15.0	75.0	60.0		25.0	
Total Split (%)	15.0%	75.0%	60.0%		25.0%	
Yellow Time (s)	3.5	3.5	3.5		3.5	
All-Red Time (s)	1.5	1.5	1.5		1.5	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0	5.0		5.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	None	C-Max	C-Max		None	
Act Effct Green (s)	9.0	72.4	58.4	81.0	17.6	100.0
Actuated g/C Ratio	0.09	0.72	0.58	0.81	0.18	1.00
v/c Ratio	0.46	0.24	0.69	0.41	0.71	0.17
Control Delay	44.3	4.1	17.3	2.8	41.1	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	44.3	4.1	17.3	2.8	41.1	0.2
LOS	D	А	В	А	D	А
Approach Delay		11.7	13.3		25.5	
Approach LOS		В	В		С	
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100)					
Offset: 0 (0%), Referenced		EBT and	8:WBT, S	Start of G	ireen	
Natural Cycle: 65						
Control Type: Actuated-Coc	ordinated					
Maximum v/c Ratio: 0.71						
Intersection Signal Delay: 1	5.4			I	ntersectio	n LOS: B
Intersection Capacity Utiliza)		[(CU Level	of Service
Analysis Period (min) 15						

Splits and Phases: 15: State Highway 7 (Baseline Road) & Coal Creek Blvd

Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 11	- 11	1		1
Traffic Vol, veh/h	0	980	1860	5	0	5
Future Vol, veh/h	0	980	1860	5	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Yield	-	None
Storage Length	-	-	-	200	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	1032	1958	5	0	5

Major/Minor	Major1	Ν	Major2	Ν	/linor2	
Conflicting Flow All	-	0	-	0	-	979
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	-	0	249
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	-	249
Mov Cap-2 Maneuver	· _	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	5 0		0		19.8	
HCM LOS					С	
Minor Lane/Major Mvr	mt	EBT	WBT	WBR S	DIn1	
	1111	EDI	VVDI			
Capacity (veh/h)		-	-	-	249	
HCM Lane V/C Ratio		-	-	-	0.021	
HCM Control Delay (s	5)	-	-	-	19.8	
HCM Lane LOS	L)	-	-	-	C	
HCM 95th %tile Q(vel	n)	-	-	-	0.1	

Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 11	- 11	1		1
Traffic Vol, veh/h	0	710	1570	25	0	20
Future Vol, veh/h	0	710	1570	25	0	20
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	0	-	0
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	747	1653	26	0	21

Major/Minor	Major1	Major2		Minor	2			
Conflicting Flow All	-	0	-	0	- 827			
Stage 1	-	-	-	-				
Stage 2	-	-	-	-				
Critical Hdwy	-	-	-	-	- 6.94			
Critical Hdwy Stg 1	-	-	-	-				
Critical Hdwy Stg 2	-	-	-	-				
Follow-up Hdwy	-	-	-	-	- 3.32			
Pot Cap-1 Maneuver	0	-	-	-	0 *434			
Stage 1	0	-	-	-	0 -			
Stage 2	0	-	-	-	0 -			
Platoon blocked, %		-	-	-	1			
Mov Cap-1 Maneuver	-	-	-	-	- *434			
Mov Cap-2 Maneuver	-	-	-	-				
Stage 1	-	-	-	-				
Stage 2	-	-	-	-				
Approach	EB		WB	S	В			
HCM Control Delay, s	0		0	13.	7			
HCM LOS					В			
Minor Lane/Major Mvn	nt	EBT	WBT	WBR SBLn	1			
Capacity (veh/h)				- 43				
HCM Lane V/C Ratio		-		- 0.04				
HCM Control Delay (s))	-	-	- 13.				
HCM Lane LOS	/	-			, B			
HCM 95th %tile Q(veh)	-	-	- 0.				
	,							
Notes		* D	1		0		* All	
~: Volume exceeds ca	pacity	\$: De	ay exc	ceeds 300s	+: Com	putation Not Defined	*: All major volume in platoon	

Timings 1: N. 119th Street & Arapahoe Road

	≯	-	*	4	Ļ	•	~	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	- ††	1	ሻ	- † †	1	<u> </u>	- ††	1	ሻ	- ††	1
Traffic Volume (vph)	175	570	382	81	230	20	189	352	115	35	254	120
Future Volume (vph)	175	570	382	81	230	20	189	352	115	35	254	120
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov
Protected Phases	7	4	5	3	8	1	5	2	3	1	6	7
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	7	4	5	3	8	1	5	2	3	1	6	7
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	12.0	41.0	12.0	12.0	41.0	12.0	12.0	35.0	12.0	12.0	35.0	12.0
Total Split (%)	12.0%	41.0%	12.0%	12.0%	41.0%	12.0%	12.0%	35.0%	12.0%	12.0%	35.0%	12.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max	None	None	C-Max	None
Act Effct Green (s)	30.1	23.1	39.1	29.7	22.9	34.4	55.1	47.9	59.7	45.7	39.1	51.1
Actuated g/C Ratio	0.30	0.23	0.39	0.30	0.23	0.34	0.55	0.48	0.60	0.46	0.39	0.51
v/c Ratio	0.50	0.74	0.47	0.40	0.30	0.04	0.32	0.22	0.12	0.07	0.19	0.14
Control Delay	28.7	41.0	4.2	23.6	29.3	1.4	4.2	4.9	0.4	12.9	22.3	3.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	28.7	41.0	4.2	23.6	29.3	1.4	4.2	4.9	0.4	12.9	22.3	3.6
LOS	С	D	А	С	С	А	А	A	А	В	C	А
Approach Delay		26.6			26.2			3.9			16.0	
Approach LOS		С			С			А			В	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 59 (59%), Reference	d to phase	e 2:NBTL	and 6:SB	TL, Start	of Green							
Natural Cycle: 50												
Control Type: Actuated-Coo	rdinated											
Maximum v/c Ratio: 0.74												
Intersection Signal Delay: 18						n LOS: B						
Intersection Capacity Utilizat	tion 54.4%)		[(CU Level	of Servic	e A					
Analysis Period (min) 15												

Splits and Phases: 1: N. 119th Street & Arapahoe Road

Ø1	Ø2 (R)	€ Ø3	
12 s	35 s	12 s	41 s
\$ Ø5	Ø6 (R)	₽ Ø7	◆ ▼ Ø8
12 s	35 s	12 s	41 s

Timings			
4: Coal Creek Blvd/County	/ Line Road	& Ara	pahoe Road

	۶	+	4	+	-	1	*	ţ	~
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	ሻሻ	¢Î		\$	ľ	≜ î≽	ľ	<u></u>	1
Traffic Volume (vph)	475	1	2	1	100	550	2	440	236
Future Volume (vph)	475	1	2	1	100	550	2	440	236
Turn Type	Prot	NA	Perm	NA	pm+pt	NA	Perm	NA	pt+ov
Protected Phases	7	4		8	5	2		6	67
Permitted Phases			8		2		6		
Detector Phase	7	4	8	8	5	2	6	6	67
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Total Split (s)	30.0	40.0	10.0	10.0	10.0	60.0	50.0	50.0	
Total Split (%)	30.0%	40.0%	10.0%	10.0%	10.0%	60.0%	50.0%	50.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Lead/Lag	Lead		Lag	Lag	Lead		Lag	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max	
Act Effct Green (s)	20.0	22.0		5.6	68.0	68.0	58.6	58.6	84.6
Actuated g/C Ratio	0.20	0.22		0.06	0.68	0.68	0.59	0.59	0.85
v/c Ratio	0.73	0.38		0.05	0.17	0.24	0.00	0.22	0.18
Control Delay	51.9	26.5		39.2	5.3	5.0	13.5	12.0	0.7
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	51.9	26.5		39.2	5.3	5.0	13.5	12.0	0.7
LOS	D	С		D	А	A	В	В	А
Approach Delay		44.9		39.2		5.1		8.1	
Approach LOS		D		D		А		А	
Intersection Summary									
Cycle Length: 100									
Actuated Cycle Length: 100									
Offset: 0 (0%), Referenced	to phase 2	:NBTL an	d 6:SBTL	, Start of	Green				
Natural Cycle: 50									
Control Type: Actuated-Coo	ordinated								
Maximum v/c Ratio: 0.73									
Intersection Signal Delay: 1					ntersectio				
Intersection Capacity Utiliza	ation 52.2%)		[(CU Level	of Service	e A		
Analysis Period (min) 15									

Splits and Phases: 4: Coal Creek Blvd/County Line Road & Arapahoe Road

≪¶ ø2 (R) ■	→ Ø4
60 s	40 s
▲ øs 🖡 🗣 ø6 (R)	₩ _{Ø7} ₹ _{Ø8}
10 s 50 s	30 s 10 s

Timings	
8: Coal Creek Blvd & Main Site Access/Old E. County	y Line Road

	≯	$\mathbf{\hat{z}}$	4	+	1	Ť	1	1	Ļ	~	
Lane Group	EBL	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	1	1	ľ	4Î	ľ	<u></u>	1	ľ	<u></u>	1	
Traffic Volume (vph)	3	12	30	0	22	650	25	5	610	5	
Future Volume (vph)	3	12	30	0	22	650	25	5	610	5	
Turn Type	pm+pt	Perm	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases	7		3	8	5	2		1	6		
Permitted Phases	4	4	8		2		2	6		6	
Detector Phase	7	4	3	8	5	2	2	1	6	6	
Switch Phase											
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Total Split (s)	10.0	20.0	10.0	20.0	10.0	60.0	60.0	10.0	60.0	60.0	
Total Split (%)	10.0%	20.0%	10.0%	20.0%	10.0%	60.0%	60.0%	10.0%	60.0%	60.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	
Act Effct Green (s)	6.1	5.5	6.3	5.5	85.8	86.5	86.5	84.6	84.3	84.3	
Actuated g/C Ratio	0.06	0.06	0.06	0.06	0.86	0.86	0.86	0.85	0.84	0.84	
v/c Ratio	0.03	0.03	0.28	0.01	0.03	0.22	0.02	0.01	0.22	0.00	
Control Delay	40.3	0.2	48.1	0.0	1.4	1.8	0.0	0.8	3.6	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	40.3	0.2	48.1	0.0	1.4	1.8	0.0	0.8	3.6	0.0	
LOS	D	А	D	А	А	А	А	А	А	А	
Approach Delay				41.6		1.7			3.5		
Approach LOS				D		А			А		
Intersection Summary											
Cycle Length: 100											
Actuated Cycle Length: 100)										
Offset: 0 (0%), Referenced		·NRTL an	d 6 [.] SBTI	Start of	Green						
Natural Cycle: 45	to phase z				Groon						
Control Type: Actuated-Coc	ordinated										
Maximum v/c Ratio: 0.28	sianatou										
Intersection Signal Delay: 3	6			Ir	ntersectio	n L OS· A					
Intersection Capacity Utiliza					CU Level						
Analysis Period (min) 15		, 		I.							

Splits and Phases: 8: Coal Creek Blvd & Main Site Access/Old E. County Line Road

Ø1	Ø2 (R)	√ Ø3	Ø4
10 s	60 s	10 s	20 s
▲ ø5	Ø6 (R)		₩ Ø8
10 s	60 s	10 s	20 s

Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1	٦	- 11	- 11	1
Traffic Vol, veh/h	0	75	0	700	650	0
Future Vol, veh/h	0	75	0	700	650	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	380	-	-	275
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	79	0	737	684	0

Major/Minor	Minor2		Major1	Ν	/lajor2		
Conflicting Flow All	-	342	684	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	6.94	4.14	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.32	2.22	-	-	-	
Pot Cap-1 Maneuver	0	*831	*1244	-	-	-	
Stage 1	0	-	-	-	-	-	
Stage 2	0	-	-	-	-	-	
Platoon blocked, %		1	1	-	-	-	
Mov Cap-1 Maneuver		*831	*1244	-	-	-	
Mov Cap-2 Maneuver	r -	-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	s 9.8		0		0		
HCM LOS	А						
Minor Lane/Major Mv	mt	NBL	NRTI	EBLn1	SBT	SBR	
		* 1244	NDT	831	301	JUK	
Capacity (veh/h) HCM Lane V/C Ratio		1244	-	0.095	-	-	
HCM Control Delay (s		0	-	9.8	-	-	
HCM Lane LOS	5)	A		9.0 A	-	-	
	b)	A 0	-	0.3	-	-	
HCM 95th %tile Q(ve	11)	0	-	0.5	-	-	
Notes							

-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

	4	•	1	*	*	ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	1	† †	1	<u> </u>	<u>††</u>
Traffic Volume (vph)	4	6	650	7	11	710
Future Volume (vph)	4	6	650	7	11	710
Turn Type	Prot	Prot	NA	Perm	pm+pt	NA
Protected Phases	8	8	2		1	6
Permitted Phases				2	6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	30.0	30.0	58.0	58.0	12.0	70.0
Total Split (%)	30.0%	30.0%	58.0%	58.0%	12.0%	70.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?			Yes	Yes	Yes	
Recall Mode	None	None	C-Max	C-Max	None	C-Max
Act Effct Green (s)	5.9	5.9	94.5	94.5	92.7	96.7
Actuated g/C Ratio	0.06	0.06	0.94	0.94	0.93	0.97
v/c Ratio	0.04	0.06	0.20	0.00	0.02	0.22
Control Delay	45.0	27.7	0.3	0.0	0.5	0.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	45.0	27.7	0.3	0.0	0.5	0.4
LOS	D	С	А	А	А	А
Approach Delay	34.6		0.3			0.4
Approach LOS	С		А			А
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100						
Offset: 6 (6%), Referenced t		NBT and	6:SBTL	Start of C	Green	
Natural Cycle: 40	- I					
Control Type: Actuated-Coo	rdinated					
Maximum v/c Ratio: 0.22						
Intersection Signal Delay: 0.	.6			Ir	ntersectio	n LOS: A
Intersection Capacity Utilization)				of Service
Analysis Period (min) 15						
J						

Splits and Phases: 10: N. 119th Street & West Full Movement Site Access

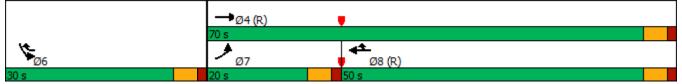
Int Delay, s/veh	0.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	- 11	1	٦	^
Traffic Vol, veh/h	0	75	582	75	75	639
Future Vol, veh/h	0	75	582	75	75	639
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	225	250	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	79	613	79	79	673

Major/Minor	Minor1	Ν	/lajor1	Ν	Major2	
Conflicting Flow All	-	307	0	0	692	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-		-
Critical Hdwy	-	6.94	-	-	4.14	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	0	*862	-	-	1186	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %		1	-	-	1	-
Mov Cap-1 Maneuver		*862	-	-	1186	-
Mov Cap-2 Maneuver	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		0.9	
HCM LOS	A		U		0.7	
N 4'		NDT				ODT
Minor Lane/Major Mv	mt	NBT	NBRW		SBL	SBT
Capacity (veh/h)		-	-	862	1186	-
HCM Lane V/C Ratio	,	-		0.092		-
HCM Control Delay (s	5)	-	-	9.6	8.3	-
HCM Lane LOS	L)	-	-	A	A	-
HCM 95th %tile Q(ve	n)	-	-	0.3	0.2	-

Notes

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Timings	
14: N. 119th Street & State Highway 7 (Baseline Road)


	≯	-	\mathbf{r}	4	←	•	1	1	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	<u></u>	1	ኘ	<u></u>	1	ሻሻ	<u></u>	1	ሻሻ	<u>††</u>	1
Traffic Volume (vph)	152	917	55	266	624	150	40	355	527	370	193	76
Future Volume (vph)	152	917	55	266	624	150	40	355	527	370	193	76
Turn Type	Prot	NA	pm+ov	Prot	NA	pm+ov	Prot	NA	Free	Prot	NA	Free
Protected Phases	7	4	5	3	8	1	5	2		1	6	
Permitted Phases			4			8			Free			Free
Detector Phase	7	4	5	3	8	1	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	10.0	23.0	10.0	10.0	23.0	10.0	10.0	23.0		10.0	23.0	
Total Split (s)	12.0	41.0	12.0	16.0	45.0	19.0	12.0	24.0		19.0	31.0	
Total Split (%)	12.0%	41.0%	12.0%	16.0%	45.0%	19.0%	12.0%	24.0%		19.0%	31.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	None	None	C-Max	None	None	None		None	None	
Act Effct Green (s)	10.3	41.1	52.5	13.7	44.4	63.1	8.4	17.6	100.0	15.6	26.9	100.0
Actuated g/C Ratio	0.10	0.41	0.52	0.14	0.44	0.63	0.08	0.18	1.00	0.16	0.27	1.00
v/c Ratio	0.45	0.66	0.06	0.60	0.42	0.15	0.15	0.60	0.35	0.72	0.21	0.05
Control Delay	46.7	27.4	0.1	37.1	38.4	7.1	43.4	41.9	0.6	43.3	26.6	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	46.7	27.4	0.1	37.1	38.4	7.1	43.4	41.9	0.6	43.3	26.6	0.1
LOS	D	С	А	D	D	А	D	D	А	D	С	A
Approach Delay		28.7			33.6			18.4			33.1	
Approach LOS		С			С			В			С	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 0 (0%), Referenced t	o phase 4	:EBT and	l 8:WBT, S	Start of G	ireen							
Natural Cycle: 70												
Control Type: Actuated-Cool	rdinated											
Maximum v/c Ratio: 0.72												
Intersection Signal Delay: 28						n LOS: C						
Intersection Capacity Utilizat	tion 66.6%)		l	CU Level	of Service	еC					
Analysis Period (min) 15												

Splits and Phases: 14: N. 119th Street & State Highway 7 (Baseline Road)

Ø1		¶ø₂	🖌 Ø3	🕊 🐨 🗹 4 (R)	
19 s		24 s	16 s	41 s	
🔩 ø5	↓ ø6		▶ Ø7	▲ [▲] ♥Ø8 (R)	
12 s	31 s		12 s	45 s	

	٠	-	+	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ካካ	† †	<u>††</u>	1	ካካ	1
Traffic Volume (vph)	275	1550	865	425	560	165
Future Volume (vph)	275	1550	865	425	560	165
Turn Type	Prot	NA	NA	pt+ov	Prot	Free
Protected Phases	7	4	8	86	6	
Permitted Phases						Free
Detector Phase	7	4	8	86	6	
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0		5.0	
Minimum Split (s)	10.0	23.0	23.0		23.0	
Total Split (s)	20.0	70.0	50.0		30.0	
Total Split (%)	20.0%	70.0%	50.0%		30.0%	
Yellow Time (s)	3.5	3.5	3.5		3.5	
All-Red Time (s)	1.5	1.5	1.5		1.5	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0	5.0		5.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	None	C-Max	C-Max		None	
Act Effct Green (s)	13.1	67.8	49.7	76.9	22.2	100.0
Actuated g/C Ratio	0.13	0.68	0.50	0.77	0.22	1.00
v/c Ratio	0.64	0.68	0.52	0.36	0.77	0.11
Control Delay	36.5	21.4	19.2	4.0	38.2	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	36.5	21.4	19.2	4.0	38.2	0.1
LOS	D	С	В	А	D	А
Approach Delay		23.7	14.2		29.5	
Approach LOS		С	В		С	
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100)					
Offset: 0 (0%), Referenced		:EBT and	8:WBT. S	Start of G	reen	
Natural Cycle: 60			0.112.70			
Control Type: Actuated-Coc	ordinated					
Maximum v/c Ratio: 0.77						
Intersection Signal Delay: 2	1.6			Ir	ntersection	n LOS: C
Intersection Capacity Utiliza)				of Service
Analysis Period (min) 15					22.01	

Splits and Phases: 15: State Highway 7 (Baseline Road) & Coal Creek Blvd

Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 11	- 11	1		1
Traffic Vol, veh/h	0	2110	1280	3	0	10
Future Vol, veh/h	0	2110	1280	3	0	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Yield	-	None
Storage Length	-	-	-	200	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	2221	1347	3	0	11

Major/Minor	Major1	Ν	Aajor2	N	linor2	
Conflicting Flow All	-	0	-	0	-	674
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver		-	-	-	0	397
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuve		-	-	-	-	397
Mov Cap-2 Maneuve	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	s 0		0		14.3	
HCM LOS					В	
Minor Lane/Major Mv	mt	EBT	WBT	WBR S	BLn1	
Capacity (veh/h)		-	-	-	397	
HCM Lane V/C Ratio		-	-	- (0.027	
HCM Control Delay (-	-	-	14.3	
HCM Lane LOS	/	-	-	-	В	
HCM 95th %tile Q(ve	h)	-	-	-	0.1	

Int Delay, s/veh 0.4 EBL Movement EBT WBT WBR SBL SBR **††** 1820 Lane Configurations ħħ ۴ ۴ 930 95 Traffic Vol, veh/h 0 115 0 Future Vol, veh/h 0 1820 930 95 0 115 Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Free Stop Stop Free Free Free RT Channelized -None -None -None Storage Length 0 ---0 -Veh in Median Storage, # -0 0 -0 -Grade, % 0 0 0 ---Peak Hour Factor 95 95 95 95 95 95 Heavy Vehicles, % 2 2 2 2 2 2 Mvmt Flow 0 1916 979 100 0 121

Major/Minor	Major1	Ν	Aajor2	Mino	or2			
Conflicting Flow All	-	0	-	0	-	490		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Critical Hdwy	-	-	-	-	-	6.94		
Critical Hdwy Stg 1	-	-	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-	-	-		
Follow-up Hdwy	-	-	-	-	-	3.32		
Pot Cap-1 Maneuver	. 0	-	-	-	0	*709		
Stage 1	0	-	-	-	0	-		
Stage 2	0	-	-	-	0	-		
Platoon blocked, %		-	-	-		1		
Nov Cap-1 Maneuve		-	-	-	-	*709		
lov Cap-2 Maneuve	er -	-	-	-	-	-		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Approach	EB		WB		SB			
ICM Control Delay,	s 0		0	1	1.1			
HCM LOS					В			
/linor Lane/Major Mv	/mt	EBT	WBT	WBR SBL	_n1			
Capacity (veh/h)		-	-		709			
ICM Lane V/C Ratio)	-	-	- 0.1				
ICM Control Delay (-	-		1.1			
ICM Lane LOS		-	-	-	В			
ICM 95th %tile Q(ve	e h)	-	-	- (0.6			
Notes								
	capacity			ceeds 300s		-	ation Not Def	 *: All major volume in plato

Timings 1: N. 119th Street & Arapahoe Road

	۶	-	\mathbf{r}	4	+	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	1	ሻ	- † †	1	ሻ	- † †	1	ሻ	- † †	1
Traffic Volume (vph)	40	193	169	177	698	47	302	148	54	35	406	175
Future Volume (vph)	40	193	169	177	698	47	302	148	54	35	406	175
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov
Protected Phases	7	4	5	3	8	1	5	2	3	1	6	7
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	7	4	5	3	8	1	5	2	3	1	6	7
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	12.0	41.0	12.0	12.0	41.0	12.0	12.0	35.0	12.0	12.0	35.0	12.0
Total Split (%)	12.0%	41.0%	12.0%	12.0%	41.0%	12.0%	12.0%	35.0%	12.0%	12.0%	35.0%	12.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max	None	None	C-Max	None
Act Effct Green (s)	33.5	27.0	45.1	34.4	27.4	39.0	50.2	41.5	53.5	39.6	32.9	44.5
Actuated g/C Ratio	0.34	0.27	0.45	0.34	0.27	0.39	0.50	0.42	0.54	0.40	0.33	0.44
v/c Ratio	0.21	0.21	0.22	0.43	0.76	0.07	0.65	0.11	0.06	0.07	0.37	0.25
Control Delay	19.6	27.6	3.0	24.3	38.4	2.3	19.1	12.2	4.2	15.3	27.6	11.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	19.6	27.6 C	3.0 A	24.3 C	38.4	2.3	19.1 B	12.2	4.2 A	15.3	27.6 C	11.4
LOS Approach Delay	В		A	L	D	А	В	В	А	В	22.3	В
Approach Delay Approach LOS		16.4 B			33.8 C			15.5 B			22.3 C	
		D			C			D			C	
Intersection Summary Cycle Length: 100												
Actuated Cycle Length: 100	1											
Offset: 84 (84%), Reference		2.NRTI	and 6.SB	TI Start	of Green							
Natural Cycle: 60	u io priast	Z.NDIL	anu 0.5D	TL, Start	UI GIEEII							
Control Type: Actuated-Coc	rdinated											
Maximum v/c Ratio: 0.76	nunateu											
Intersection Signal Delay: 2	43			Ir	ntersectio	n LOS: C						
Intersection Capacity Utiliza		,				of Service	э.С.					
Analysis Period (min) 15		,		I.								

Splits and Phases: 1: N. 119th Street & Arapahoe Road

Ø1	Ø2 (R)	€ Ø3	
12 s	35 s	12 s	41 s
\$ Ø5	Ø6 (R)	₽ Ø7	◆ ▼ Ø8
12 s	35 s	12 s	41 s

Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	- 11	1	٦	- 11	٦	1
Traffic Vol, veh/h	236	8	3	833	21	9
Future Vol, veh/h	236	8	3	833	21	9
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	200	250	-	0	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	248	8	3	877	22	9

Major/Minor	Major1	Ν	/lajor2	N	/linor1	
Conflicting Flow All	0	0	256	0	693	124
Stage 1	-	-	-	-	248	-
Stage 2	-	-	-	-	445	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	1306	-	377	904
Stage 1	-	-	-	-	770	-
Stage 2	-	-	-	-	613	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuve	r -	-	1306	-	376	904
Mov Cap-2 Maneuve	r -	-	-	-	376	-
Stage 1	-	-	-	-	770	-
Stage 2	-	-	-	-	612	-
					ND	

Approach	EB	WB	NB	
HCM Control Delay, s	0	0	13.3	
HCM LOS			В	

Minor Lane/Major Mvmt	NBLn1 N	IBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	376	904	-	-	1306	-
HCM Lane V/C Ratio	0.059	0.01	-	-	0.002	-
HCM Control Delay (s)	15.2	9	-	-	7.8	-
HCM Lane LOS	С	А	-	-	А	-
HCM 95th %tile Q(veh)	0.2	0	-	-	0	-

Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	- 11	1	٦	- 11	٦	1
Traffic Vol, veh/h	230	14	6	798	38	18
Future Vol, veh/h	230	14	6	798	38	18
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	200	250	-	0	0
Veh in Median Storage	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	242	15	6	840	40	19

Major/Minor	Major1	Ma	ajor2	Ν	1inor1	
Conflicting Flow All	0	0	257	0	674	121
Stage 1	-	-	-	-	242	-
Stage 2	-	-	-	-	432	-
Critical Hdwy	-		4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	- 1	1305	-	388	908
Stage 1	-	-	-	-	776	-
Stage 2	-	-	-	-	622	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	· -	- 1	1305	-	386	908
Mov Cap-2 Maneuver	· _	-	-	-	386	-
Stage 1	-	-	-	-	776	-
Stage 2	-	-	-	-	619	-
Approach	EB		WB		NB	
HCM Control Delay, s	s 0		0.1		13.3	

······································	-	- · ·		
HCM LOS			В	

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	386	908	-	-	1305	-
HCM Lane V/C Ratio	0.104	0.021	-	-	0.005	-
HCM Control Delay (s)	15.4	9	-	-	7.8	-
HCM Lane LOS	С	А	-	-	А	-
HCM 95th %tile Q(veh)	0.3	0.1	-	-	0	-

Timings	
4: Coal Creek Blvd/County Line Road & Arapahoe	Road

	٦	-	4	+	1	Ť	1	ţ	-	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ኘኘ	eî 👘		4	۲	A	۲	<u></u>	1	
Traffic Volume (vph)	149	1	2	1	294	482	2	562	508	
Future Volume (vph)	149	1	2	1	294	482	2	562	508	
Turn Type	Prot	NA	Perm	NA	pm+pt	NA	Perm	NA	pt+ov	
Protected Phases	7	4		8	5	2		6	67	
Permitted Phases			8		2		6			
Detector Phase	7	4	8	8	5	2	6	6	67	
Switch Phase										
Vinimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Vinimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		
Fotal Split (s)	20.0	30.0	10.0	10.0	10.0	70.0	60.0	60.0		
Fotal Split (%)	20.0%	30.0%	10.0%	10.0%	10.0%	70.0%	60.0%	60.0%		
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		
Fotal Lost Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		
_ead/Lag	Lead		Lag	Lag	Lead		Lag	Lag		
_ead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes	Yes		
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max		
Act Effct Green (s)	10.3	12.6		5.9	77.4	77.4	64.1	64.1	79.4	
Actuated g/C Ratio	0.10	0.13		0.06	0.77	0.77	0.64	0.64	0.79	
/c Ratio	0.45	0.36		0.05	0.49	0.19	0.00	0.26	0.39	
Control Delay	32.0	5.0		38.4	8.7	3.8	9.0	8.9	1.2	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	32.0	5.0		38.4	8.7	3.8	9.0	8.9	1.2	
.OS	С	A		D	А	A	A	A	А	
Approach Delay		21.2 C		38.4		5.7		5.2		
Approach LOS		C		D		А		А		
Intersection Summary										
Cycle Length: 100										
Actuated Cycle Length: 100)									
Offset: 62 (62%), Reference	ed to phase	2:NBTL	and 6:SB	TL, Start	of Green					
latural Cycle: 55										
Control Type: Actuated-Coo	ordinated									
Maximum v/c Ratio: 0.49										
ntersection Signal Delay: 7					ntersectio					
Intersection Capacity Utiliza	ition 64.4%)		10	CU Level	of Servic	еC			
Analysis Period (min) 15										

Splits and Phases: 4: Coal Creek Blvd/County Line Road & Arapahoe Road

≪¶ Ø2 (R) ♥	→ Ø4	
70 s	30 s	
▲ Ø5 🖡 ♣ Ø6 (R)	₽ Ø7	₹ø8
10 s 60 s	20 s 10)s

Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	- 11	- 11	1	٦	1
Traffic Vol, veh/h	15	653	606	4	12	51
Future Vol, veh/h	15	653	606	4	12	51
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	325	-	-	275	0	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	16	687	638	4	13	54

Major/Minor	Major1	Ма	jor2	Ν	/linor2	
Conflicting Flow All	642	0	-	0	1014	319
Stage 1	-	-	-	-	638	-
Stage 2	-	-	-	-	376	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	939	-	-	-	235	677
Stage 1	-	-	-	-	488	-
Stage 2	-	-	-	-	664	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	939	-	-	-	231	677
Mov Cap-2 Maneuver	-	-	-	-	231	-
Stage 1	-	-	-	-	480	-
Stage 2	-	-	-	-	664	-
Approach	EB		WB		SB	

Approach	EB	WB	SB
HCM Control Delay, s	0.2	0	12.8
HCM LOS			В

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	SBLn2
Capacity (veh/h)	939	-	-	- 231	677
HCM Lane V/C Ratio	0.017	-	-	- 0.055	0.079
HCM Control Delay (s)	8.9	-	-	- 21.5	10.8
HCM Lane LOS	А	-	-	- C	В
HCM 95th %tile Q(veh)	0.1	-	-	- 0.2	0.3

Int Delay, s/veh	0.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	1	٦	- 11	- 11	1
Traffic Vol, veh/h	17	65	20	650	651	6
Future Vol, veh/h	17	65	20	650	651	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	350	-	-	275
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	18	68	21	684	685	6

Major/Minor	Minor2	Ν	/lajor1	Maj	or2	
Conflicting Flow All	1069	343	691	0	-	0
Stage 1	685	-	-	-	-	-
Stage 2	384	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	216	653	900	-	-	-
Stage 1	462	-	-	-	-	-
Stage 2	658	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve	r 211	653	900	-	-	-
Mov Cap-2 Maneuver	r 211	-	-	-	-	-
Stage 1	451	-	-	-	-	-
Stage 2	658	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	13.8	0.3	0
HCM LOS	В		

Minor Lane/Major Mvmt	NBL	NBT E	BLn1	EBLn2	SBT	SBR
Capacity (veh/h)	900	-	211	653	-	-
HCM Lane V/C Ratio	0.023	-	0.085	0.105	-	-
HCM Control Delay (s)	9.1	-	23.6	11.2	-	-
HCM Lane LOS	А	-	С	В	-	-
HCM 95th %tile Q(veh)	0.1	-	0.3	0.3	-	-

Timings	
8: Coal Creek Blvd & Main Site Access/Old E. County	Line Road

2040 Total AM Peak

	۶	-	\mathbf{r}	4	-	1	Ť	۲	5	ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	↑	1	ሻ	eî 👘	ሻ	<u>^</u>	1	ሻ	- † †	1	
Traffic Volume (vph)	31	2	87	98	0	29	703	51	12	743	7	
Future Volume (vph)	31	2	87	98	0	29	703	51	12	743	7	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases	7	4		3	8	5	2		1	6		
Permitted Phases	4		4	8		2		2	6		6	
Detector Phase	7	4	4	3	8	5	2	2	1	6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Total Split (s)	10.0	20.0	20.0	15.0	25.0	10.0	55.0	55.0	10.0	55.0	55.0	
Total Split (%)	10.0%	20.0%	20.0%	15.0%	25.0%	10.0%	55.0%	55.0%	10.0%	55.0%	55.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	
Act Effct Green (s)	9.9	6.0	6.0	18.1	11.8	73.4	73.1	73.1	71.0	68.5	68.5	
Actuated g/C Ratio	0.10	0.06	0.06	0.18	0.12	0.73	0.73	0.73	0.71	0.68	0.68	
v/c Ratio	0.21	0.02	0.42	0.45	0.06	0.06	0.29	0.05	0.02	0.32	0.01	
Control Delay	35.4	43.5	9.2	40.6	0.3	4.8	5.7	0.1	6.8	10.3	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay LOS	35.4 D	43.5	9.2 A	40.6	0.3	4.8 A	5.7 A	0.1 A	6.8 A	10.3 B	0.0	
	U	D	A	D	A 32.2	A	А 5.3	A	A	в 10.1	А	
Approach Delay		16.5 B			32.2 C		5.3 A			10.1 B		
Approach LOS		В			L		A			В		
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 0 (0%), Referenced to	phase 2	:NBTL an	d 6:SBTL	., Start of	Green							
Natural Cycle: 50												
Control Type: Actuated-Coor	dinated											
Maximum v/c Ratio: 0.45												
Intersection Signal Delay: 10				Ir	ntersectio	n LOS: A						
Intersection Capacity Utilizat	ion 44.5%)		(CU Level	of Service	e A					
Analysis Period (min) 15												

Splits and Phases: 8: Coal Creek Blvd & Main Site Access/Old E. County Line Road

Ø1	Ø2 (R)	Ø3	↓ _{Ø4}
10 s	55 s	15 s	20 s
1 ø5	Ø6 (R)	∕ Ø7	₩ Ø8
10 s	55 s	10 s	25 s

Int Delay, s/veh	0.9						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	1
Lane Configurations		1	٦	- 11	- 11	1	
Traffic Vol, veh/h	0	135	16	783	910	29)
Future Vol, veh/h	0	135	16	783	910	29)
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free)
RT Channelized	-	None	-	None	-	None	ļ
Storage Length	-	0	380	-	-	275	j
Veh in Median Storage,	# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	95	95	95	95	95	95	5
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	0	142	17	824	958	31	

Major/Minor	Minor2		Vajor1	Ν	/lajor2			
Conflicting Flow All	-	479	989	0	-	0		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Critical Hdwy	-	6.94	4.14	-	-	-		
Critical Hdwy Stg 1	-	-	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-	-	-		
Follow-up Hdwy	-	3.32	2.22	-	-	-		
Pot Cap-1 Maneuver	0	*709	*1061	-	-	-		
Stage 1	0	-	-	-	-	-		
Stage 2	0	-	-	-	-	-		
Platoon blocked, %		1	1	-	-	-		
Mov Cap-1 Maneuver		*709	*1061	-	-	-		
Mov Cap-2 Maneuver		-	-	-	-	-		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Approach	EB		NB		SB			
HCM Control Delay, s	5 11.3		0.2		0			
HCM LOS	В							
Minor Lane/Major Mv	mt	NBL	NBTI	EBLn1	SBT	SBR		
Capacity (veh/h)		* 1061	-	709	-	-		
HCM Lane V/C Ratio		0.016	-	0.2	-	-		
HCM Control Delay (s	5)	8.4	-	11.3	-	-		
HCM Lane LOS		А	-	В	-	-		
HCM 95th %tile Q(vel	h)	0	-	0.7	-	-		
Notes								
··· Volumo ovcoods c	anacity	¢. Do		oods 30	Ω_{c}	L. Comr	utation Not Dofined	*· All major volumo in platoon

-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

	4	•	1	1	1	ŧ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	1	<u>†</u> †	1	5	<u></u>
Traffic Volume (vph)	95	81	424	32	27	726
Future Volume (vph)	95	81	424	32	27	726
Turn Type	Prot	Prot	NA	Perm	pm+pt	NA
Protected Phases	8	8	2		1	6
Permitted Phases				2	6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	30.0	30.0	58.0	58.0	12.0	70.0
Total Split (%)	30.0%	30.0%	58.0%	58.0%	12.0%	70.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?			Yes	Yes	Yes	
Recall Mode	None	None	C-Max	C-Max	None	C-Max
Act Effct Green (s)	11.0	11.0	72.3	72.3	79.0	79.0
Actuated g/C Ratio	0.11	0.11	0.72	0.72	0.79	0.79
v/c Ratio	0.52	0.34	0.17	0.03	0.04	0.27
Control Delay	50.7	12.6	2.7	0.8	1.3	1.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	50.7	12.6	2.7	0.8	1.3	1.3
LOS	D	B	A	A	A	A
Approach Delay	33.2		2.6			1.3
Approach LOS	C		A			A
Intersection Summary	-					
Cycle Length: 100						
Actuated Cycle Length: 100					(C	
Offset: 32 (32%), Reference	ed to phase	e 2:NBT a	IND 6:581	L, Start c	of Green	
Natural Cycle: 40						
Control Type: Actuated-Coc	ordinated					
Maximum v/c Ratio: 0.52	0					
Intersection Signal Delay: 5						n LOS: A
Intersection Capacity Utiliza	1001 33.7%)		[(U Level	of Service
Analysis Period (min) 15						
Callia and Disease 40. N	4401 01	1014				

Splits and Phases: 10: N. 119th Street & West Full Movement Site Access

Int Delay, s/veh	3.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	1	1	1	Y	
Traffic Vol, veh/h	19	46	67	0	1	57
Future Vol, veh/h	19	46	67	0	1	57
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	150	-	-	150	0	-
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	20	48	71	0	1	60

Major/Minor	Major1	Ν	lajor2	[Vinor2	
Conflicting Flow All	71	0	-	0	159	71
Stage 1	-	-	-	-	71	-
Stage 2	-	-	-	-	88	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1529	-	-	-	837	991
Stage 1	-	-	-	-	952	-
Stage 2	-	-	-	-	938	-
Platoon blocked, %		-	-	-	1	
Mov Cap-1 Maneuver		-	-	-	826	991
Mov Cap-2 Maneuver	r -	-	-	-	826	-
Stage 1	-	-	-	-	940	-
Stage 2	-	-	-	-	938	-
Approach	EB		WB		SB	
HCM Control Delay, s	5 2.2		0		8.9	
HCM LOS					А	
Minor Lane/Major Mv	mt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1529	-	-	-	988
HCM Lane V/C Ratio		0.013	-	-	-	0.062
HCM Control Delay (s		7.4	-	-	-	8.9
HCM Lane LOS		А	-	-	-	А
HCM 95th %tile Q(vel	h)	0	-	-	-	0.2

Int Delay, s/veh	5.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	- ሽ	↑	↑	1	- ሽ	1
Traffic Vol, veh/h	16	31	15	7	24	52
Future Vol, veh/h	16	31	15	7	24	52
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	150	-	-	150	0	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	17	33	16	7	25	55

Major/Minor	Major1	Ν	/lajor2]	Minor2	
Conflicting Flow All	23	0	-	0	83	16
Stage 1	-	-	-	-	16	-
Stage 2	-	-	-	-	67	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1592	-	-	-	924	1063
Stage 1	-	-	-	-	1007	-
Stage 2	-	-	-	-	959	-
Platoon blocked, %		-	-	-	1	
Mov Cap-1 Maneuver		-	-	-	914	1063
Mov Cap-2 Maneuver		-	-	-	914	-
Stage 1	-	-	-	-	996	-
Stage 2	-	-	-	-	959	-
Approach	EB		WB		SB	
HCM Control Delay, s			0		8.8	
HCM LOS	, 2.0		0		A O.U	
					Л	
Minor Lane/Major Mvr	mt	EBL	EBT	WBT	WBR 3	SBLn1 SBLn2
Capacity (veh/h)		1592	-	-	-	914 1063
HCM Lano V/C Datio		0.011				0 0 28 0 0 51

HCM Lane V/C Ratio	0.011	-	-	- 0.0	28 0.	.051	
HCM Control Delay (s)	7.3	-	-	- 9	9.1	8.6	
HCM Lane LOS	А	-	-	-	А	А	
HCM 95th %tile Q(veh)	0	-	-	- (D.1	0.2	

Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	- 11	1	ľ	^
Traffic Vol, veh/h	0	48	407	39	32	788
Future Vol, veh/h	0	48	407	39	32	788
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	225	250	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	51	428	41	34	829

Major/Minor	Minor1	Ν	/lajor1	ľ	Major2	
Conflicting Flow All	-	214	0	0	469	0
Stage 1	-		-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	4.14	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	. 0	*923	-	-	1347	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %		1	-	-	1	-
Mov Cap-1 Maneuve	er -	*923	-	-	1347	-
Mov Cap-2 Maneuve	er -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay,			0		0.3	
HCM LOS	3 7.1 A		U		0.0	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
Minor Lane/Major M	/mt	NBT	NBRW		SBL	SBT
Capacity (veh/h)		-	-	923	1347	-
HCM Lane V/C Ratio		-	-		0.025	-
HCM Control Delay (	(S)	-	-	9.1	7.7	-
HCM Lane LOS		-	-	А	A	-

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

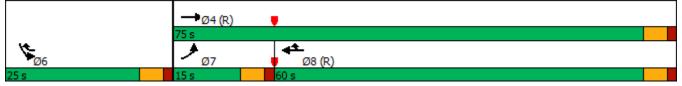
0.1

0.2

Notes

HCM 95th %tile Q(veh)

Timings	
14: N. 119th Street & State Highway 7 (Baseline Road)	


	≯	-	•	•	+	×	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	- <b>†</b> †	1	ካካ	- <b>†</b> †	1	ካካ	<u></u>	1	ካካ	<u></u>	1
Traffic Volume (vph)	80	415	70	629	946	205	55	161	236	123	511	155
Future Volume (vph)	80	415	70	629	946	205	55	161	236	123	511	155
Turn Type	Prot	NA	pm+ov	Prot	NA	pm+ov	Prot	NA	Free	Prot	NA	Free
Protected Phases	7	4	5	3	8	1	5	2		1	6	
Permitted Phases			4			8			Free			Free
Detector Phase	7	4	5	3	8	1	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	10.0	23.0	10.0	10.0	23.0	10.0	10.0	23.0		10.0	23.0	
Total Split (s)	10.0	29.0	10.0	31.0	50.0	12.0	10.0	28.0		12.0	30.0	
Total Split (%)	10.0%	29.0%	10.0%	31.0%	50.0%	12.0%	10.0%	28.0%		12.0%	30.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag		Lead	Lag	_
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	None	None	C-Max	None	None	None		None	None	
Act Effct Green (s)	8.5	34.2	44.2	25.5	53.3	65.3	7.0	19.4	100.0	8.9	23.3	100.0
Actuated g/C Ratio	0.08	0.34	0.44	0.26	0.53	0.65	0.07	0.19	1.00	0.09	0.23	1.00
v/c Ratio	0.29	0.36	0.10	0.76	0.53	0.19	0.24	0.25	0.16	0.42	0.65	0.10
Control Delay	45.9	27.8	0.7	54.7	13.8	0.4	46.7	33.5	0.2	37.2	34.9	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	45.9	27.8	0.7	54.7	13.8	0.4	46.7	33.5	0.2	37.2	34.9	0.1
LOS	D	C	А	D	B	А	D	С	А	D	С	A
Approach Delay		27.0			26.7			17.7			28.4	_
Approach LOS		С			С			В			С	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 48 (48%), Referenced	d to phase	e 4:EBT a	ind 8:WB	F, Start of	f Green							
Natural Cycle: 70												
Control Type: Actuated-Coor	dinated											
Maximum v/c Ratio: 0.76												
Intersection Signal Delay: 26				I	ntersectio	n LOS: C						
Intersection Capacity Utilizat	ion 61.9%	)		[(	CU Level	of Service	вB					
Analysis Period (min) 15												

Splits and Phases: 14: N. 119th Street & State Highway 7 (Baseline Road)

Ø1	<b>1</b> ø₂	<b>√</b> Ø3		🛡 🐨 Ø4 (R)	
12 s	28 s	31 s		29 s	
<b>\$</b> Ø5	▼ Ø6		<u>Ø8 (R)</u>	•	
10 s 30	)s	10 s	50 s		

	٦	<b>→</b>	+	•	1	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻሻ	<b>††</b>	<b>^</b>	7	ካካ	1
Traffic Volume (vph)	178	598	1362	620	598	438
Future Volume (vph)	178	598	1362	620	598	438
Turn Type	Prot	NA	NA	pt+ov	Prot	Free
Protected Phases	7	4	8	86	6	
Permitted Phases						Free
Detector Phase	7	4	8	86	6	
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0		5.0	
Minimum Split (s)	10.0	23.0	23.0		23.0	
Total Split (s)	15.0	75.0	60.0		25.0	
Total Split (%)	15.0%	75.0%	60.0%		25.0%	
Yellow Time (s)	3.5	3.5	3.5		3.5	
All-Red Time (s)	1.5	1.5	1.5		1.5	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0	5.0		5.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	None	C-Max	C-Max		None	
Act Effct Green (s)	9.5	70.0	55.5	80.5	20.0	100.0
Actuated g/C Ratio	0.10	0.70	0.56	0.80	0.20	1.00
v/c Ratio	0.58	0.25	0.73	0.51	0.92	0.29
Control Delay	51.5	3.3	19.5	4.2	54.7	0.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	51.5	3.3	19.5	4.2	54.7	0.5
LOS	D	А	В	А	D	А
Approach Delay		14.3	14.7		31.8	
Approach LOS		В	В		С	
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100						
Offset: 0 (0%), Referenced		EBT and	8:WBT, S	Start of G	reen	
Natural Cycle: 65						
Control Type: Actuated-Coo	rdinated					
Maximum v/c Ratio: 0.92						
Intersection Signal Delay: 1	9.3			I	ntersection	n LOS: B
Intersection Capacity Utiliza		)				of Service
Analysis Period (min) 15						
j						

Splits and Phases: 15: State Highway 7 (Baseline Road) & Coal Creek Blvd



Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 11	- 11	1		1
Traffic Vol, veh/h	0	1198	1931	5	0	5
Future Vol, veh/h	0	1198	1931	5	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Yield	-	None
Storage Length	-	-	-	200	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	1261	2033	5	0	5

Major/Minor	Major1	Ν	/lajor2	Μ	linor2	
Conflicting Flow All	-	0	-	0	-	1017
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	-	0	235
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	-	235
Mov Cap-2 Maneuver	· -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		20.7	
HCM LOS					С	
Minor Long/Major Mu	mt	ГДТ	WBT		DI n1	
Minor Lane/Major Mvi	m	EBT	WRI	WBR S		
Capacity (veh/h)		-	-	-	235	
HCM Lane V/C Ratio	.)	-	-	- (	0.022	
HCM Control Delay (s	5)	-	-	-	20.7	
HCM Lane LOS		-	-	-	C	
HCM 95th %tile Q(vel	1)	-	-	-	0.1	

Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 11	- 11	1		1
Traffic Vol, veh/h	0	774	1759	25	0	21
Future Vol, veh/h	0	774	1759	25	0	21
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	0	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	815	1852	26	0	22

Major/Minor	Major1	Ν	/lajor2	Mine	or2			
Conflicting Flow All	-	0	-	0	-	926		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Critical Hdwy	-	-	-	-	- (	6.94		
Critical Hdwy Stg 1	-	-	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-	-	-		
Follow-up Hdwy	-	-	-	-		3.32		
Pot Cap-1 Maneuver	0	-	-	-	0 *	372		
Stage 1	0	-	-	-	0	-		
Stage 2	0	-	-	-	0	-		
Platoon blocked, %		-	-	-		1		
Mov Cap-1 Maneuver		-	-	-	- *	372		
Mov Cap-2 Maneuver	r -	-	-	-	-	-		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Approach	EB		WB		SB			
HCM Control Delay, s	s 0		0	1	5.3			
HCM LOS					С			
Minor Lane/Major Mv	mt	EBT	WBT	WBR SBL	_n1			
Capacity (veh/h)		-	-		372			
HCM Lane V/C Ratio		-	-	- 0.0				
HCM Control Delay (s		-	_		5.3			
HCM Lane LOS	-	-	-	-	C			
HCM 95th %tile Q(vel	h)	-	-	-	0.2			
	.,							
Notes								
~: Volume exceeds ca	apacity	\$: De	lay exc	ceeds 300s	5 +:	Comp	outation Not Defined	*: All major volume in platoon

# Timings 1: N. 119th Street & Arapahoe Road

	۶	-	7	4	+	×	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	- <b>†</b> †	1	ሻ	- <b>†</b> †	1	ሻ	- <b>†</b> †	1	ሻ	<b>^</b>	1
Traffic Volume (vph)	175	632	440	108	261	38	228	375	162	69	288	120
Future Volume (vph)	175	632	440	108	261	38	228	375	162	69	288	120
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov
Protected Phases	7	4	5	3	8	1	5	2	3	1	6	7
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	7	4	5	3	8	1	5	2	3	1	6	7
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	12.0	41.0	12.0	12.0	41.0	12.0	12.0	35.0	12.0	12.0	35.0	12.0
Total Split (%)	12.0%	41.0%	12.0%	12.0%	41.0%	12.0%	12.0%	35.0%	12.0%	12.0%	35.0%	12.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max	None	None	C-Max	None
Act Effct Green (s)	32.2	25.2	41.9	32.1	25.1	37.8	52.1	42.3	54.3	43.7	36.1	48.1
Actuated g/C Ratio	0.32	0.25	0.42	0.32	0.25	0.38	0.52	0.42	0.54	0.44	0.36	0.48
v/c Ratio	0.48	0.75	0.55	0.54	0.31	0.06	0.42	0.26	0.18	0.15	0.24	0.15
Control Delay	26.6	39.7	8.5	26.6	27.6	2.5	7.1	8.4	1.3	14.4	24.5	3.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay LOS	26.6 C	39.7 D	8.5	26.6 C	27.6 C	2.5 A	7.1 A	8.4 A	1.3 A	14.4 B	24.5 C	3.8 A
Approach Delay	U	26.8	А	C	25.0	A	A	6.5	A	Б	17.8	A
Approach LOS		20.8 C			25.0 C			0.0 A			17.8 B	
		C			C			A			D	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 10					(0)							
Offset: 59 (59%), Reference	ced to phase	e 2:NBTL	and 6:SB	TL, Start	of Green							
Natural Cycle: 55	P											
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.75	107			1.								
Intersection Signal Delay:						n LOS: B	n D					
Intersection Capacity Utiliz	2011011 60.7%	)		10	JU Level	of Service	зB					
Analysis Period (min) 15												

Splits and Phases: 1: N. 119th Street & Arapahoe Road

Ø1	Ø2 (R)	<b>€</b> ¶ø3	
12 s	35 s	12 s	41 s
<b>\$</b> Ø5	Ø6 (R)	<b>₽</b> Ø7	<b>◆</b> ▼ Ø8
12 s	35 s	12 s	41 s

Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	- 11	1	٦	- 11	٦	1
Traffic Vol, veh/h	773	26	9	399	13	6
Future Vol, veh/h	773	26	9	399	13	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	200	250	-	0	0
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	814	27	9	420	14	6

Major/Minor	Major1	Ν	/lajor2		Vinor1						
Conflicting Flow All	0	0	841	0	1042	407					
Stage 1	-	-	-	-	814	-					
Stage 2	-	-	-	-	228	-					
Critical Hdwy	-	-	4.14	-	6.84	6.94					
Critical Hdwy Stg 1	-	-	-	-	5.84	-					
Critical Hdwy Stg 2	-	-	-	-	5.84	-					
Follow-up Hdwy	-	-	2.22	-	3.52	3.32					
Pot Cap-1 Maneuver	-	-	790	-	225	593					
Stage 1	-	-	-	-	396	-					
Stage 2	-	-	-	-	788	-					
Platoon blocked, %	-	-		-							
Mov Cap-1 Maneuve		-	790	-	223	593					
Mov Cap-2 Maneuve	r -	-	-	-	223	-					
Stage 1	-	-	-	-	396	-					
Stage 2	-	-	-	-	779	-					
Approach	EB		WB		NB						

Approach	EB	WB	NB
HCM Control Delay, s	0	0.2	18.7
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	223	593	-	-	790	-
HCM Lane V/C Ratio	0.061	0.011	-	-	0.012	-
HCM Control Delay (s)	22.2	11.1	-	-	9.6	-
HCM Lane LOS	С	В	-	-	А	-
HCM 95th %tile Q(veh)	0.2	0	-	-	0	-

Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	- 11	1	٦	- 11	٦	1
Traffic Vol, veh/h	731	48	20	383	25	12
Future Vol, veh/h	731	48	20	383	25	12
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	200	250	-	0	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	769	51	21	403	26	13

Major/Minor	Major1	Majo	or2	Ν	Ainor1	
Conflicting Flow All	0	0 8	20	0	1013	385
Stage 1	-	-	-	-	769	-
Stage 2	-	-	-	-	244	-
Critical Hdwy	-	- 4.	14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	- 2.	22	-	3.52	3.32
Pot Cap-1 Maneuver	-	- 8	05	-	235	613
Stage 1	-	-	-	-	418	-
Stage 2	-	-	-	-	774	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver		- 8	05	-	229	613
Mov Cap-2 Maneuver	· _	-	-	-	229	-
Stage 1	-	-	-	-	418	-
Stage 2	-	-	-	-	754	-
Approach	EB	V	VB		NB	
LICM Control Dolou			) F		10	

HCM Control Delay, s	0	0.5	19	
HCM LOS			С	

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)	229	613	-	-	805	-	
HCM Lane V/C Ratio	0.115	0.021	-	-	0.026	-	
HCM Control Delay (s)	22.8	11	-	-	9.6	-	
HCM Lane LOS	С	В	-	-	А	-	
HCM 95th %tile Q(veh)	0.4	0.1	-	-	0.1	-	

Timings	
4: Coal Creek Blvd/County Line Road & Arapahoe	Road

Lane Group Lane Configurations Traffic Volume (vph) Future Volume (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s)	EBL 497 497 Prot 7 5.0 10.0 30.0 30.0% 3.0 2.0	EBT 1 1 NA 4 5.0 10.0 40.0 40.0%	WBL 2 2 Perm 8 8 8 5.0 10.0	WBT 1 1 NA 8 8 5.0	NBL 139 139 pm+pt 5 2 5	NBT 627 627 NA 2 2	SBL 2 2 Perm 6 6	SBT	SBR 264 264 pt+ov 6 7	
Traffic Volume (vph) Future Volume (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	497 497 Prot 7 5.0 10.0 30.0 30.0% 3.0	1 NA 4 5.0 10.0 40.0	2 Perm 8 8 8 5.0 10.0	1 1 NA 8 8	139 139 pm+pt 5 2 5	627 627 NA 2	2 2 Perm 6	520 520 NA 6	264 264 pt+ov 6 7	
Future Volume (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	497 497 Prot 7 5.0 10.0 30.0 30.0% 3.0	1 NA 4 5.0 10.0 40.0	2 Perm 8 8 8 5.0 10.0	1 1 NA 8 8	139 pm+pt 5 2 5	627 627 NA 2	2 2 Perm 6	520 520 NA 6	264 pt+ov 6 7	
Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Yellow Time (s) All-Red Time (s)	Prot 7 5.0 10.0 30.0 30.0% 3.0	NA 4 4 5.0 10.0 40.0	Perm 8 8 5.0 10.0	NA 8 8 5.0	pm+pt 5 2 5	NA 2	Perm 6	NA 6	pt+ov 6 7	
Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	7 7 5.0 10.0 30.0 30.0% 3.0	4 4 5.0 10.0 40.0	8 8 5.0 10.0	8 8 5.0	5 2 5	2	6	6	67	
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	7 5.0 10.0 30.0 30.0% 3.0	4 5.0 10.0 40.0	8 5.0 10.0	8 5.0	2 5					
Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	5.0 10.0 30.0 30.0% 3.0	5.0 10.0 40.0	8 5.0 10.0	5.0	5	2				
Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	5.0 10.0 30.0 30.0% 3.0	5.0 10.0 40.0	5.0 10.0	5.0		2	6			
Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	10.0 30.0 30.0% 3.0	10.0 40.0	10.0				0	6	67	
Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	10.0 30.0 30.0% 3.0	10.0 40.0	10.0							
Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	30.0 30.0% 3.0	40.0			5.0	5.0	5.0	5.0		
Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	30.0% 3.0		40.0	10.0	10.0	10.0	10.0	10.0		
Total Split (%) Yellow Time (s) All-Red Time (s)	3.0	40.0%	10.0	10.0	10.0	60.0	50.0	50.0		
Yellow Time (s) All-Red Time (s)	3.0	10.070	10.0%	10.0%	10.0%	60.0%	50.0%	50.0%		
All-Red Time (s)		3.0	3.0	3.0	3.0	3.0	3.0	3.0		
		2.0	2.0	2.0	2.0	2.0	2.0	2.0		
	0.0	0.0		0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		
Lead/Lag	Lead		Lag	Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes	Yes		
Recall Mode	None	None	None	None	None	C-Max	C-Max	C-Max		
Act Effct Green (s)	20.6	22.6		5.6	67.4	67.4	55.1	55.1	80.8	
Actuated g/C Ratio	0.21	0.23		0.06	0.67	0.67	0.55	0.55	0.81	
v/c Ratio	0.74	0.47		0.05	0.27	0.28	0.00	0.28	0.21	
Control Delay	49.4	23.4		39.2	4.7	4.2	13.5	13.5	0.8	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	49.4	23.4		39.2	4.7	4.2	13.5	13.5	0.8	
LOS	D	C		07.2 D	Α	A	B	B	A	
Approach Delay	2	40.8		39.2		4.3	2	9.2		
Approach LOS		D		D		A		A		
••		2		2						
Intersection Summary										
Cycle Length: 100										
Actuated Cycle Length: 100				<b>.</b>	-					
Offset: 0 (0%), Referenced to	phase 2:	:NBTL an	d 6:SBTL	, Start of	Green					
Natural Cycle: 55										
Control Type: Actuated-Coord	dinated									
Maximum v/c Ratio: 0.74	•									
Intersection Signal Delay: 17.8					ntersectio		_			
Intersection Capacity Utilization	on 55.4%	)		10	CU Level	of Service	e R			
Analysis Period (min) 15										

Splits and Phases: 4: Coal Creek Blvd/County Line Road & Arapahoe Road

≪1 Ø2 (R) ♥	<b>→</b> Ø4
60 s	40 s
▲ ø5 🖕 🗣 🕫 (R)	<b>₩</b> _{Ø7} <b>▼</b> _{Ø8}
10 s 50 s	30 s 10 s

Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	<b>^</b>	- 11	1	٦	1
Traffic Vol, veh/h	49	668	672	13	8	34
Future Vol, veh/h	49	668	672	13	8	34
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	325	-	-	275	0	0
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	52	703	707	14	8	36

Major/Minor	Major1	Ма	ijor2	Ν	/linor2	
Conflicting Flow All	721	0	-	0	1163	354
Stage 1	-	-	-	-	707	-
Stage 2	-	-	-	-	456	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	877	-	-	-	188	642
Stage 1	-	-	-	-	450	-
Stage 2	-	-	-	-	605	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuve	r 877	-	-	-	177	642
Mov Cap-2 Maneuve	r-	-	-	-	177	-
Stage 1	-	-	-	-	423	-
Stage 2	-	-	-	-	605	-
Approach	EB		WB		SB	
HCM Control Delay,	s 0.6		0		13.9	

	· · <b>J</b>			
HCM LOS			В	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	SBLn2
Capacity (veh/h)	877	-	-	- 177	642
HCM Lane V/C Ratio	0.059	-	-	- 0.048	0.056
HCM Control Delay (s)	9.4	-	-	- 26.4	10.9
HCM Lane LOS	А	-	-	- D	В
HCM 95th %tile Q(veh)	0.2	-	-	- 0.1	0.2

Int Delay, s/veh	0.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	- ሽ	1	ኘ	- 11	- 11	1
Traffic Vol, veh/h	11	44	68	706	686	19
Future Vol, veh/h	11	44	68	706	686	19
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	350	-	-	275
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	46	72	743	722	20

Major/Minor	Minor2	Ν	/lajor1	Maj	or2	
Conflicting Flow All	1238	361	742	0	-	0
Stage 1	722	-	-	-	-	-
Stage 2	516	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	168	636	861	-	-	-
Stage 1	442	-	-	-	-	-
Stage 2	564	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve	r 154	636	861	-	-	-
Mov Cap-2 Maneuver	r 154	-	-	-	-	-
Stage 1	405	-	-	-	-	-
Stage 2	564	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	14.9	0.8	0
HCM LOS	В		

Minor Lane/Major Mvmt	NBL	NBT	EBLn1	EBLn2	SBT	SBR
Capacity (veh/h)	861	-	154	636	-	-
HCM Lane V/C Ratio	0.083	-	0.075	0.073	-	-
HCM Control Delay (s)	9.6	-	30.3	11.1	-	-
HCM Lane LOS	А	-	D	В	-	-
HCM 95th %tile Q(veh)	0.3	-	0.2	0.2	-	-

Timings	
8: Coal Creek Blvd & Main Site Access/Old E. County	Line Road

2040 Total PM Peak

		Ŧ	•			1	1	•	+	*	
EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
	<b>↑</b>			4		<u>^</u>		<u>۲</u>		1	
	7	58	87	0	99	815	113	29	733	23	
				0							
• •		Perm					Perm	pm+pt		Perm	
	4			8		2		1	6		
7	4	4	3	8	5	2	2	1	6	6	
U		A	U		A		A	A		A	
	D			U		A			A		
hase 2.	NBTL an	d 6 [.] SBTL	Start of	Green							
				Oreen							
nated											
natou											
			Ir	tersectio	n I OS·A						
n 50 7%						• A					
1 00.7 70			K			<i></i>					
- -	*         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         5.0         10.0         10.0%         3.0         2.0         0.0         5.0         Lead         Yes         None         9.9         0.10         0.13         37.6         0.0         37.6         D	▶       ▶         20       7         20       7         20       7         20       7         pm+pt       NA         7       4         4       7         4       7         5.0       5.0         10.0       10.0         10.0       20.0%         3.0       3.0         3.0       3.0         2.0       2.0         0.0       0.0         5.0       5.0         Lead       Lag         Yes       Yes         None       None         9.9       6.0         0.10       0.06         37.6       45.3         0       D         14.6       B	20         7         58           20         7         58           pm+pt         NA         Perm           7         4         4           4         4         4           7         4         4           7         4         4           7         4         4           7         4         4           7         4         4           7         4         4           7         4         4           7         4         4           7         4         4           7         4         4           7         4         4           7         4         4           7         4         4           7         4         4           7         6         5.0           10.0         10.0         10.0           10.0         0.0         0.0           10         0.0         0.0           10         0.0         0.0           11         0.0         0.0           12.0         0         0 <td< td=""><td>20         7         58         87           20         7         58         87           pm+pt         NA         Perm         pm+pt           7         4         3           4         4         8           7         4         4         3           5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0           10.0         20.0         20.0         10.0           10.0         20.0         20.0         10.0           10.0         20.0         20.0         10.0           10.0         20.0         20.0         10.0           10.0%         20.0%         20.0%         10.0%           3.0         3.0         3.0         3.0           2.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0           5.0         5.0         5.0         5.0           Lead         Lag         Lag         Lead           Yes         Yes         Yes         Yes           None         None         None           0.10         &lt;</td><td>20         7         58         87         0           20         7         58         87         0           pm+pt         NA         Perm         pm+pt         NA           7         4         4         8           7         4         4         8           7         4         4         8           7         4         4         3         8           5.0         5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0         10.0           10.0         20.0%         20.0%         10.0%         20.0%           3.0         3.0         3.0         3.0         3.0         3.0           2.0         2.0         2.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0         0.0         0.0           5.0         5.0         5.0         5.0         5.0         5.0           Lead         Lag         Lag         Lag         Lag         2         1.0           0.10         0.06         0.28         0.56         0.05         37.6</td><td>20         7         58         87         0         99           20         7         58         87         0         99           pm+pt         NA         Perm         pm+pt         NA         pm+pt           7         4         3         8         5           4         4         8         2         7           7         4         4         3         8         5           5.0         5.0         5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0         10.0         10.0           10.0         20.0         20.0         10.0%         20.0%         10.0%           3.0         3.0         3.0         3.0         3.0         3.0         3.0           2.0         2.0         2.0         2.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           10.0         76.0         5.0         5.0         5.0         5.0         5.0         1.0         0.76           0.10         0.06         0.28</td><td>1         7         58         87         0         99         815           20         7         58         87         0         99         815           pm+pt         NA         Perm         pm+pt         NA         pm+pt         NA           7         4         4         8         2         2         7         4         4         8         2           7         4         4         3         8         5         2         2           7         4         4         3         8         5         2           5.0         5.0         5.0         5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0         10.0         10.0         10.0           10.0         20.0%         20.0%         10.0%         20.0%         10.0%         60.0%           3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0           2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0         0.0</td><td>20         7         58         87         0         99         815         113           20         7         58         87         0         99         815         113           pm+pt         NA         Perm         pm+pt         NA         pm+pt         NA         Perm           7         4         3         8         5         2         2           4         4         8         2         2         2           7         4         4         3         8         5         2         2           5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0         10.0         10.0         10.0           10.0%         20.0%         10.0%         20.0%         10.0%         60.0%         60.0%           3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0</td><td>1         1         1         1         1         1         1         1         29           20         7         58         87         0         99         815         113         29           pm+pt         NA         Perm         pm+pt         NA         pm+pt         NA         Perm         pm+pt           7         4         3         8         5         2         1           4         4         8         2         2         6           7         4         4         3         8         5         2         2           5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0           10.0         20.0         20.0         10.0%         20.0%         10.0%         60.0%         60.0%         10.0%           3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0</td><td>1         1         1         1         1         1         1         2         7         3           20         7         58         87         0         99         815         113         29         733           pm+pt         NA         Perm         pm+pt         NA         pm+pt         NA         Perm         pm+pt         NA           7         4         3         8         5         2         1         6           4         4         8         2         2         6         6           7         4         4         3         8         5         2         1         6           5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0         10.0         10.0         10.0         60.0%         60.0%         60.0%         60.0%         60.0%         60.0%         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0</td><td>•         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •</td></td<>	20         7         58         87           20         7         58         87           pm+pt         NA         Perm         pm+pt           7         4         3           4         4         8           7         4         4         3           5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0           10.0         20.0         20.0         10.0           10.0         20.0         20.0         10.0           10.0         20.0         20.0         10.0           10.0         20.0         20.0         10.0           10.0%         20.0%         20.0%         10.0%           3.0         3.0         3.0         3.0           2.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0           5.0         5.0         5.0         5.0           Lead         Lag         Lag         Lead           Yes         Yes         Yes         Yes           None         None         None           0.10         <	20         7         58         87         0           20         7         58         87         0           pm+pt         NA         Perm         pm+pt         NA           7         4         4         8           7         4         4         8           7         4         4         8           7         4         4         3         8           5.0         5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0         10.0           10.0         20.0%         20.0%         10.0%         20.0%           3.0         3.0         3.0         3.0         3.0         3.0           2.0         2.0         2.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0         0.0         0.0           5.0         5.0         5.0         5.0         5.0         5.0           Lead         Lag         Lag         Lag         Lag         2         1.0           0.10         0.06         0.28         0.56         0.05         37.6	20         7         58         87         0         99           20         7         58         87         0         99           pm+pt         NA         Perm         pm+pt         NA         pm+pt           7         4         3         8         5           4         4         8         2         7           7         4         4         3         8         5           5.0         5.0         5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0         10.0         10.0           10.0         20.0         20.0         10.0%         20.0%         10.0%           3.0         3.0         3.0         3.0         3.0         3.0         3.0           2.0         2.0         2.0         2.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           10.0         76.0         5.0         5.0         5.0         5.0         5.0         1.0         0.76           0.10         0.06         0.28	1         7         58         87         0         99         815           20         7         58         87         0         99         815           pm+pt         NA         Perm         pm+pt         NA         pm+pt         NA           7         4         4         8         2         2         7         4         4         8         2           7         4         4         3         8         5         2         2           7         4         4         3         8         5         2           5.0         5.0         5.0         5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0         10.0         10.0         10.0           10.0         20.0%         20.0%         10.0%         20.0%         10.0%         60.0%           3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0           2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0           0.0         0.0         0.0         0.0         0.0	20         7         58         87         0         99         815         113           20         7         58         87         0         99         815         113           pm+pt         NA         Perm         pm+pt         NA         pm+pt         NA         Perm           7         4         3         8         5         2         2           4         4         8         2         2         2           7         4         4         3         8         5         2         2           5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0         10.0         10.0         10.0           10.0%         20.0%         10.0%         20.0%         10.0%         60.0%         60.0%           3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0	1         1         1         1         1         1         1         1         29           20         7         58         87         0         99         815         113         29           pm+pt         NA         Perm         pm+pt         NA         pm+pt         NA         Perm         pm+pt           7         4         3         8         5         2         1           4         4         8         2         2         6           7         4         4         3         8         5         2         2           5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0           10.0         20.0         20.0         10.0%         20.0%         10.0%         60.0%         60.0%         10.0%           3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0	1         1         1         1         1         1         1         2         7         3           20         7         58         87         0         99         815         113         29         733           pm+pt         NA         Perm         pm+pt         NA         pm+pt         NA         Perm         pm+pt         NA           7         4         3         8         5         2         1         6           4         4         8         2         2         6         6           7         4         4         3         8         5         2         1         6           5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0           10.0         10.0         10.0         10.0         10.0         10.0         10.0         60.0%         60.0%         60.0%         60.0%         60.0%         60.0%         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0	•         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •

Splits and Phases: 8: Coal Creek Blvd & Main Site Access/Old E. County Line Road

Ø1	Ø2 (R)	<b>√</b> Ø3	Ø4
10 s	60 s	10 s	20 s
▲ ø5	Ø6 (R)		<b>₩</b> Ø8
10 s	60 s	10 s	20 s

Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1	- ኘ	- 11	- 11	1
Traffic Vol, veh/h	0	145	55	1028	828	46
Future Vol, veh/h	0	145	55	1028	828	46
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	380	-	-	275
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	153	58	1082	872	48

Major/Minor	Minor2		Major1	Λ	/lajor2	
Conflicting Flow All	-			0		0
Stage 1	_	430		-	_	-
Stage 2	_		-		-	-
Critical Hdwy	-			-	-	-
Critical Hdwy Stg 1	_	0.74	4.14	_	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-			-		-
Pot Cap-1 Maneuver	0		*1106	-	-	-
	0		-	-	-	-
Stage 1	0			-		
Stage 2 Platoon blocked, %	0	- 1	- 1	-	-	-
	-	-		-	-	-
Mov Cap-1 Maneuver			*1106	-	-	-
Mov Cap-2 Maneuver			-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11.1		0.4		0	
HCM LOS	В					
			NET		ODT	000
Minor Lane/Major Mvn	nt	NBL	NRI	EBLn1	SBT	SBR
Capacity (veh/h)		* 1106	-	710	-	-
HCM Lane V/C Ratio		0.052	-	0.206	-	-
HCM Control Delay (s)	)	8.4	-	11.1	-	-
HCM Lane LOS		А	-	В	-	-
HCM 95th %tile Q(veh	ı)	0.2	-	0.8	-	-
Notos						

Notes

-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

	4	•	1	1	1	Ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	1	<b>†</b> †	1	ሻ	<u>††</u>
Traffic Volume (vph)	63	54	712	111	92	749
Future Volume (vph)	63	54	712	111	92	749
Turn Type	Prot	Prot	NA	Perm	pm+pt	NA
Protected Phases	8	8	2		1	6
Permitted Phases				2	6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	30.0	30.0	58.0	58.0	12.0	70.0
Total Split (%)	30.0%	30.0%	58.0%	58.0%	12.0%	70.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	0.0	0.0	Lag	Lag	Lead	0.0
Lead-Lag Optimize?			Yes	Yes	Yes	
Recall Mode	None	None	C-Max	C-Max	None	C-Max
Act Effct Green (s)	9.1	9.1	74.5	74.5	83.0	84.0
Actuated g/C Ratio	0.09	0.09	0.74	0.74	0.83	0.84
v/c Ratio	0.41	0.29	0.28	0.10	0.17	0.26
Control Delay	49.8	15.2	1.2	0.2	1.9	1.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	49.8	15.2	1.2	0.2	1.9	1.4
LOS	D	B	A	A	A	A
Approach Delay	33.8		1.1			1.5
Approach LOS	С		A			A
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100		NOT		01 1 6	_	
Offset: 6 (6%), Referenced	to phase 2:	INBL and	6:SBTL,	Start of C	Sreen	
Natural Cycle: 40						
Control Type: Actuated-Coo	ordinated					
Maximum v/c Ratio: 0.41						
Intersection Signal Delay: 3						n LOS: A
Intersection Capacity Utiliza	ation 41.4%			[(	JU Level	of Service
Analysis Period (min) 15						

Splits and Phases: 10: N. 119th Street & West Full Movement Site Access



Int Delay, s/veh	3.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	1	1	1	Y	
Traffic Vol, veh/h	64	85	68	1	1	38
Future Vol, veh/h	64	85	68	1	1	38
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	150	-	-	150	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	67	89	72	1	1	40

Major/Minor	Major1	Ν	/lajor2	1	Minor2	
Conflicting Flow All	73	0	-	0	295	72
Stage 1	-	-	-	-	72	-
Stage 2	-	-	-	-	223	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1527	-	-	-	712	990
Stage 1	-	-	-	-	951	-
Stage 2	-	-	-	-	825	-
Platoon blocked, %		-	-	-	1	
Mov Cap-1 Maneuver	1527	-	-	-	680	990
Mov Cap-2 Maneuver	-	-	-	-	680	-
Stage 1	-	-	-	-	909	-
Stage 2	-	-	-	-	825	-
Approach	EB		WB		SB	
HCM Control Delay, s	3.2		0		8.8	
HCM LOS					А	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1527	-	-	-	979
HCM Lane V/C Ratio		0.044	-	-	-	0.042
HCM Control Delay (s)	)	7.5	-	-	-	8.8
HCM Lane LOS		А	-	-	-	А
HCM 95th %tile Q(veh	ı)	0.1	-	-	-	0.1

#### Intersection

Int Delay, s/veh	4.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	1	1	1	٦	1
Traffic Vol, veh/h	55	31	36	25	15	33
Future Vol, veh/h	55	31	36	25	15	33
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	150	-	-	150	0	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	58	33	38	26	16	35

Major/Minor	Major1	Ν	/lajor2	ſ	Vinor2	
Conflicting Flow All	64	0	-	0	187	38
Stage 1	-	-	-	-	38	-
Stage 2	-	-	-	-	149	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1538	-	-	-	806	1034
Stage 1	-	-	-	-	984	-
Stage 2	-	-	-	-	881	-
Platoon blocked, %		-	-	-	1	
Mov Cap-1 Maneuver		-	-	-	776	1034
Mov Cap-2 Maneuver	r -	-	-	-	776	-
Stage 1	-	-	-	-	947	-
Stage 2	-	-	-	-	881	-
Approach	EB		WB		SB	
HCM Control Delay, s			0		8.9	
HCM LOS					A	
Minor Lane/Major Mvi	mt	EBL	EBT	WBT	WBR :	SBLn1 SBLn2
Capacity (veh/h)		1538		-		776 1034

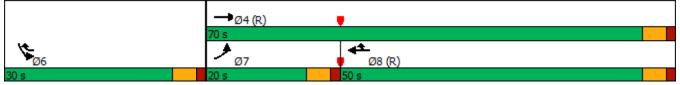
Capacity (veh/h)	1538	-	-	-	//6	1034	
HCM Lane V/C Ratio	0.038	-	-	-	0.02	0.034	
HCM Control Delay (s)	7.4	-	-	-	9.7	8.6	
HCM Lane LOS	А	-	-	-	А	А	
HCM 95th %tile Q(veh)	0.1	-	-	-	0.1	0.1	

#### Intersection

Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	- 11	1	٦	<b>^</b>
Traffic Vol, veh/h	0	99	723	122	99	713
Future Vol, veh/h	0	99	723	122	99	713
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	225	250	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	104	761	128	104	751

Major/Minor	Minor1	Ν	/lajor1	ľ	Major2			
Conflicting Flow All	-	381	0	0	889	0		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Critical Hdwy	-	6.94	-	-	4.14	-		
Critical Hdwy Stg 1	-	-	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-	-	-		
Follow-up Hdwy	-	3.32	-	-	2.22	-		
Pot Cap-1 Maneuver	0	*801	-	-	1060	-		
Stage 1	0	-	-	-	-	-		
Stage 2	0	-	-	-	-	-		
Platoon blocked, %		1	-	-	1	-		
Nov Cap-1 Maneuve		*801	-	-	1060	-		
Nov Cap-2 Maneuve	r -	-	-	-	-	-		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Approach	WB		NB		SB			
ICM Control Delay,	s 10.2		0		1.1			
ICM LOS	В							
/linor Lane/Major Mv	rmt	NBT	NBRWB	Ln1	SBL	SBT		
Capacity (veh/h)		-	-	801	1060	-		
ICM Lane V/C Ratio	)	-	- (	0.13	0.098	-		
ICM Control Delay (	s)	-		10.2	8.8	-		
ICM Lane LOS		-	-	В	А	-		
ICM 95th %tile Q(ve	eh)	-	-	0.4	0.3	-		
Votes								
-: Volume exceeds c	apacity	\$: De	lay excee	eds 3	00s	+: Comput	ation Not Define	ed *: All major volume in platoon

Timings	
14: N. 119th Street & State Highway 7 (Baseline Road)	


	۶	-	$\mathbf{r}$	•	+	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	<u></u>	1	ካካ	- <b>†</b> †	1	ሻሻ	<u></u>	1	ካካ	<u></u>	1
Traffic Volume (vph)	220	1012	55	306	692	204	40	422	580	385	224	105
Future Volume (vph)	220	1012	55	306	692	204	40	422	580	385	224	105
Turn Type	Prot	NA	pm+ov	Prot	NA	pm+ov	Prot	NA	Free	Prot	NA	Free
Protected Phases	7	4	5	3	8	1	5	2		1	6	
Permitted Phases			4			8			Free			Free
Detector Phase	7	4	5	3	8	1	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	10.0	23.0	10.0	10.0	23.0	10.0	10.0	23.0		10.0	23.0	
Total Split (s)	12.0	41.0	12.0	16.0	45.0	19.0	12.0	24.0		19.0	31.0	
Total Split (%)	12.0%	41.0%	12.0%	16.0%	45.0%	19.0%	12.0%	24.0%		19.0%	31.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0		-2.0	-2.0	
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	None	None	C-Max	None	None	None		None	None	
Act Effct Green (s)	10.3	39.7	51.1	13.6	43.0	61.8	8.4	19.0	100.0	15.7	28.3	100.0
Actuated g/C Ratio	0.10	0.40	0.51	0.14	0.43	0.62	0.08	0.19	1.00	0.16	0.28	1.00
v/c Ratio	0.66	0.76	0.07	0.69	0.48	0.21	0.15	0.66	0.39	0.75	0.24	0.07
Control Delay	53.5	30.8	0.1	39.0	41.2	10.5	43.4	42.5	0.7	42.8	27.3	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	53.5	30.8	0.1	39.0	41.2	10.5	43.4	42.5	0.7	42.8	27.3	0.1
LOS	D	С	А	D	D	В	D	D	А	D	С	А
Approach Delay		33.4			35.4			19.3			31.6	
Approach LOS		С			D			В			С	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 0 (0%), Referenced	to phase 4	:EBT and	l 8:WBT, S	Start of G	ireen							
Natural Cycle: 70												
Control Type: Actuated-Coo	rdinated											
Maximum v/c Ratio: 0.76												
Intersection Signal Delay: 3				li	ntersectio	n LOS: C						
Intersection Capacity Utiliza	tion 72.7%	)		[(	CU Level	of Service	еC					
Analysis Period (min) 15												

Splits and Phases: 14: N. 119th Street & State Highway 7 (Baseline Road)

Ø1		Ø2	<b>√</b> Ø3	🛡 🐨 Ø4 (R)	
19 s		24 s	16 s	41 s	
<b>\$</b> Ø5	↓ ø6		▶ Ø7	<b>4</b> ² <mark>1</mark> 28 (R)	
12 s	31 s		12 s	45 s	

	٦	-	+	•	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ካካ	<b>†</b> †	<b>^</b>	1	ካካ	1
Traffic Volume (vph)	427	1565	905	658	688	283
Future Volume (vph)	427	1565	905	658	688	283
Turn Type	Prot	NA	NA	pt+ov	Prot	Free
Protected Phases	7	4	8	86	6	
Permitted Phases						Free
Detector Phase	7	4	8	86	6	
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0		5.0	
Minimum Split (s)	10.0	23.0	23.0		23.0	
Total Split (s)	20.0	70.0	50.0		30.0	
Total Split (%)	20.0%	70.0%	50.0%		30.0%	
Yellow Time (s)	3.5	3.5	3.5		3.5	
All-Red Time (s)	1.5	1.5	1.5		1.5	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0	5.0		5.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	None	C-Max	C-Max		None	
Act Effct Green (s)	14.9	65.7	45.8	75.1	24.3	100.0
Actuated g/C Ratio	0.15	0.66	0.46	0.75	0.24	1.00
v/c Ratio	0.88	0.71	0.59	0.58	0.87	0.19
Control Delay	45.5	24.4	22.2	7.7	41.2	0.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	45.5	24.4	22.2	7.7	41.2	0.3
LOS	D	С	С	А	D	А
Approach Delay		28.9	16.1		29.3	
Approach LOS		С	В		С	
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100	)					
Offset: 0 (0%), Referenced		:EBT and	8:WBT, S	Start of G	ireen	
Natural Cycle: 60						
Control Type: Actuated-Coo	ordinated					
Maximum v/c Ratio: 0.88						
Intersection Signal Delay: 2	4.6			li	ntersection	n LOS: C
Intersection Capacity Utiliza	ation 71.2%	, )		](	CU Level	of Service
Analysis Period (min) 15						

Splits and Phases: 15: State Highway 7 (Baseline Road) & Coal Creek Blvd



#### Intersection

Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 11	- 11	1		1
Traffic Vol, veh/h	0	2242	1521	3	0	10
Future Vol, veh/h	0	2242	1521	3	0	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Yield	-	None
Storage Length	-	-	-	200	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	2360	1601	3	0	11

Major/Minor	Major1	Ν	Najor2	Ν	linor2	
Conflicting Flow All	-	0	-	0	-	801
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	-	0	327
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	-	327
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		16.4	
HCM LOS					С	
Minor Lane/Major Mvr	nt	EBT	WBT	WBR S	RI n1	
Capacity (veh/h)	m	LDI	VVDI	-	327	
HCM Lane V/C Ratio		-	-		0.032	
HCM Control Delay (s	١	-	-	-	16.4	
HCM Lane LOS	)	-	-	-	10.4 C	
HCM 95th %tile Q(ver	ນ	-	-	-	0.1	
	IJ.	-	-	-	0.1	

# Intersection

Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 11	- 11	1		1
Traffic Vol, veh/h	0	1978	1083	95	0	119
Future Vol, veh/h	0	1978	1083	95	0	119
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	0	-	0
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	2082	1140	100	0	125

Major/Minor	Major1	Ν	/lajor2	Minor2	)		
Conflicting Flow All	-	0	-	0	570		
Stage 1	-	-	-				
Stage 2	-	-	-				
Critical Hdwy	-	-	-		6.94		
Critical Hdwy Stg 1	-	-	-				
Critical Hdwy Stg 2	-	-	-	-			
Follow-up Hdwy	-	-	-	-	3.32		
Pot Cap-1 Maneuver	0	-	-	- (	) *648		
Stage 1	0	-	-	- (	) -		
Stage 2	0	-	-	- (	) -		
Platoon blocked, %		-	-	-	1		
Mov Cap-1 Maneuver	-	-	-		* *648		
Mov Cap-2 Maneuver	-	-	-	-			
Stage 1	-	-	-				
Stage 2	-	-	-	-			
Approach	EB		WB	SE	}		
HCM Control Delay, s	0		0	11.9	)		
HCM LOS				E	5		
Minor Lane/Major Mvn	nt	EBT	WBT	WBR SBLn1			
Capacity (veh/h)		-	-	- 648			
HCM Lane V/C Ratio		-	-	- 0.193			
HCM Control Delay (s)	)	-	-	- 11.9			
HCM Lane LOS		-	-	- E			
HCM 95th %tile Q(veh	I)	-	-	- 0.7			
Notes							
	pacity	\$: De	lay exc	ceeds 300s	+: Com	putation Not Defined	*: All major volume in platoon
~: Volume exceeds ca	pacity	\$: De	lay exc	ceeds 300s	+: Com	putation Not Defined	*: All major volume in platoon

# KT ENGINEERING ENGINEERS + SURVEYORS

**(KT)** 

PROJECT: ERIE GATEWAY SOUTH ANNEXATION #8

REPORT: PHASE I DRAINAGE REPORT

ISSUE DATE: JUNE 14, 2019

REVISIONS: 03.18.2021

### Contents

<ul> <li>ii. TOWN ACCEPTANCE</li> <li>I. GENERAL LOCATION AND DESCRIPTION</li> <li>A. Location</li> <li>B. Description of the Property</li> </ul>	ii
A. Location	ii
	1
	1
B. Description of the Property	
II. DRAINAGE BASINS	
A. Major Basin Description	2
B. Sub-basin Description	
III. DRAINAGE FACILITY DESIGN	
A. General Concept	5
B. Specific Details	6
C. Adaptations from Criteria	
IV. SUMMARY	8
V. REFERENCES	8

#### APPENDIX A

<u> </u>	Conorol	Location	Mon
ar	General	Location	IVIAD

b) Design Charts & Tables

#### APPENDIX B

a) Hydrologic Calculations

#### APPENDIX C

- a) FIRM Mapsb) NRCS Soils Report

#### i. ENGINEER'S CERTIFICATION

"I hereby certify that this Phase I Drainage Report for the design of Erie Gateway South – Annexation #8 was prepared by me (or under my direct supervision) in accordance with the provisions of the *Town of Erie Standards and Specifications for Design and Construction* for the owners thereof. I understand that the Town of Erie does not and will not assume liability for drainage facilities designed by others, including the designs presented in this report."

Owen Keith Keenan Registered Professional Engineer State of Colorado No. 47677

#### ii. TOWN ACCEPTANCE

This report has been reviewed and found to be in general compliance with the *Town of Erie Standards and Specifications for Design and Construction* and other Town requirements. <u>THE ACCURACY AND VALIDITY OF THE ENGINEERING DESIGN, DETAILS, DIMENSIONS, QUANTITIES, AND CONCEPTS IN THIS REPORT REMAINS THE SOLE RESPONSIBILITY OF THE PROFESSIONAL ENGINEER WHOSE STAMP AND SIGNATURE APPEAR HEREON.</u>

Accepted by:

Deputy Public Works Director

Date

#### I. GENERAL LOCATION AND DESCRIPTION

#### A. Location

The portion of Parkdale Subdivision associated with the Erie Gateway South – Annexation #8 is a proposed 136 lot residential development on a 15.7 acre parcel of land. The development area associated the Erie Gateway South – Annexation #8 is bounded to the north and east by Parkdale Subdivision – Filing No. 1, to the south by Baseline Road, and to the west by privately owned land currently used for agriculture.

The Erie Gateway South – Annexation #8 development area is located in the SW ¼ Section 36, Township 1 North, Range 69 West of the Sixth Principal Meridian.

Coal Creek is the closest major drainage way and is located on the east side of E. County Line Road. The Coal Creek channel is located approximately 1,500 feet to the east of the site. All runoff generated from the proposed site is ultimately conveyed to Coal Creek.

A General Location Map has been provided in Appendix A.

#### **B.** Description of the Property

The Erie Gateway South – Annexation #8 parcel is approximately 15.7 acres in size. It is currently used as agricultural land with livestock. The existing property contains a residence and several barns and livestock pens.

Existing ground cover varies. Open fields with native grasses exist throughout a majority of the property. Trees primarily exist along Baseline Road frontage and buildings.

Drainageway 2 South traverses the development parcel along the south side of the parcel adjacent to Baseline Road. Drainageway 2 South was identified in the Town of Erie Outfall Systems Plan (West of Coal Creek). This document was prepared by RESPEC Consulting & Services dated January 2014 (Erie OSP). Drainageway 2 North is located just off the proposed development Parcel and is part of Parkdale Filing No. 1. Improvements were made to Drainageway 2 North as required in the Parkdale Filing No. 1 site.

There is no evidence of irrigation facilities within the Erie Gateway South – Annexation #8 parcel.

There is no evidence of wetland areas within the Erie Gateway South – Annexation #8 parcel. The Powers Marsh is located to the east of the project and contained within the Parkdale Filing No. 1 site. It is located approximately 550 feet to the east of the development parcel. The Powers Marsh has been designated as a Critical Wildlife Habitat in the Boulder County Comprehensive Plan. Boulder County acknowledges that this large wetland area is a known habitat for the Northern Harrier and Least Bittern bird species.

#### II. DRAINAGE BASINS

#### A. Major Basin Description

The Erie Gateway South – Annexation #8 parcel lies within the Coal Creek Drainage Basin. Coal Creek at its closest point to the site is approximately 1,500 feet to the east of the boundary on the east side of E. County Line Road. The development site is located approximately 1 mile downstream of the Rock Creeks confluence with Coal Creek. The entire Coal Creek and Rock Creek watershed is approximately 80 square miles and lies within Weld County, City and County of Broomfield, Boulder County, Jefferson County and Gilpin County.

#### Applicable Major Drainageway Studies

Coal Creek has been the subject of numerous Urban Drainage and Flood Control District (UDFCD) studies and master plans. Below is a list of the most recent UDFCD Drainage Studies and Master Plans associated with Coal Creek.

- Flood Hazard Area Delineation, Coal Creek and Rock Creek, Prepared by RESPEC Consulting Services, Dated November 2014.
- Coal Creek and Rock Creek, Major Drainageway Plan, Prepared by RESPEC Consulting Services, Dated October 2014.
- Town of Erie, Outfall Systems Plan (West of Coal Creek), Prepared by RESPEC Consulting Services, Dated January 2014.

The Erie Gateway South – Annexation #8 parcel is located in Zone X according to FEMA Flood Insurance Rate Maps (FIRM). Zone X is defined as areas determined to be outside the 0.2% annual chance floodplain. The Erie Gateway South – Annexation #8 parcel is located on map number 08013C0439J, Revised December 18, 2012.

#### Existing Major Basin Characteristics

Existing Coal Creek major basin characteristics include a mix of open space, parks, rural residential, low, medium and high density residential and commercial land uses. Table 1 below was obtained from the Coal Creek and Rock Creek Flood Hazard Area Delineation (Coal Creek FHAD) and summarizes percent impervious, land use, and percent of area composition of the Coal Creek Drainage basin.

Percent Impervious	Land Use Type	Percent of Area
2%	Open Space	55%
3-10%	Parks	6%
11-20%	Rural Residential	5%
21-30%	Rural Residential	5%
31-40%	Rural Residential	6%
41-50%	Public Facilities/Schools	7%
51-60%	Low Density Residential	6%
61-70%	Med. Density Residential/Business Office	4%
71-80%	High Density Residential/Commercial	2%
81-90%	Retail/Roadways	2%
91-100%	Industrial	2%

#### Table 1: Existing Land Use Table

The Coal Creek FHAD also developed a Future Land Use table which was developed by assigning imperviousness values to various land use categories provided from each municipalities' comprehensive plans. The Table 2 below summarizes these calculations.

#### Table 2: Future Land Use Table

Land Use Type	Percent of Area									
Open Space	33%									
Parks	11%									
Rural Residential	5%									
Rural Residential	4%									
Rural Residential	9%									
Public Facilities/Schools	7%									
Low Density Residential	9%									
Med. Density Residential/Business Office	4%									
High Density Residential/Commercial	8%									
Retail/Roadways	6%									
Industrial	4%									
	Land Use Type Open Space Parks Rural Residential Rural Residential Rural Residential Public Facilities/Schools Low Density Residential Med. Density Residential/Business Office High Density Residential/Commercial Retail/Roadways									

The Coal Creek FHAD states that the overall land use imperviousness for existing and future land use is 19.8% and 32.7%, respectively. In review of the land use map contained within the Coal Creek FHAD, the Erie Gateway South – Annexation #8 parcel was assumed open space in both existing and future analysis.

#### Existing Major Basin Drainage Patterns

In general, Coal Creek drains to the northeast. Coal Creek is a tributary to Boulder Creek. The Boulder Creek confluence is approximately 5 miles north of the Erie Gateway South – Annexation #8 parcel. Drainageway 2 South is within the subject property and Drainageway 2 North is just north the subject property and located within the Parkdale Filing No. 1 subdivision. It is anticipated that the North half of the Erie Gateway South – Annexation #8 parcel will outfall to Drainageway 2 South.

#### Existing Irrigation Facilities

There are no known irrigation facilities within the Erie Gateway South – Annexation #8 parcel.

#### Existing Ponds

There are no known ponds within the Erie Gateway South – Annexation #8 parcel.

#### B. Sub-basin Description

#### Proposed Master Plan Improvements

Improvements associated with the Erie OSP are proposed within the Erie Gateway South – Annexation #8 parcel. The Drainageway 2 South channel will be improved and constructed as part of the development improvements. The channel section will be capable of conveying 1,536 cfs, which corresponds to existing condition flows, which represents a worst case scenario in terms of peak flowrates. Once Regional Pond 1060 is constructed as part of the Erie OSP; flowrates along Drainageway 2 South would be reduced to 684 cfs. The design flow of 1,536 cfs corresponds with the triple box culvert (12'W x 5'H) design associated with the Parkdale Filing No. 1 improvements. The triple box culvert is located just downstream (or east) of the subject property. There will likely be at least one grouted boulder drop structure in the improved channel along Baseline Road.

Drainageway 2 North is located north of the subject property within Parkdale Filing No. 1. This channel is being improved for the improvements associated with Parkdale Filing No. 1. It is not anticipated that channel modifications will be necessary once the Erie Gateway South Annexation #8 parcel is developed due to the future design considerations associated with the Drainageway 2 North channel. These considerations will be discussed in greater detail below.

#### Existing Drainage Patterns

The Erie Gateway South – Annexation #8 parcel is sloped in two primary directions due to a ridge line or high point located in the approximate middle of the parcel. The north half of the parcel drains to the northeast, and the south half drains to the southeast. Flows along the north half enter the Drainageway 2 North associated with Parkdale Filing No. 1 and flows along the south half enter Drainageway 2 South.

Drainageway 2 South is composed of approximately 717 acres of tributary area upstream of the Erie Gateway South – Annexation #8 parcel outfall. This basin flows from west to east and is along Baseline Road through the southernmost portion of the site. Existing flooding problems are documented along the properties north of Baseline Road. This drainageway receives 100-year flows calculated as 1,536 cfs. Improvements associated with the development of the Erie Gateway South – Annexation #8 parcel will be to formalize the channel to provide capacity for 1,536 cfs. The channel will likely be constructed with at least one grouted boulder drop structure. Future improvements by others as presented in the Erie OSP include the construction of Regional Detention Pond 1060. This pond is to be located upstream of the subject site. The regional pond will reduce peak outflows to Drainageway 2 South to historical flowrates as well as diverting excess flows to the North to Drainageway 2 North.

Drainageway 2 North is composed of approximately 156 acres of tributary area adjacent to the Erie Gateway South – Annexation #8 parcel outfall. In general, this basin flows from west to east. Runoff from this basin is generated in the open space parcel located on the west side of N. 119th Street. Runoff is conveyed under N. 119th Street via a 24-inch RCP culvert. Flows proceed east through private property before being intercepted by Channel A associated with the Parkdale Filing No. 1 improvements. Flows are ultimately conveyed under Coal Creek Boulevard via a 20'W x 10'H box culvert containing a 12'W pedestrian underpass. Flows ultimately continue east before entering Regional WQCV Pond B associated with Parkdale Filing No. 1 improvements.

#### Downstream Flow Patterns and Impacts of Proposed Development

The Coal Creek Outfall for Drainageway 2 South is approximately 1,200 feet to the east of the Erie Gateway South – Annexation #8 parcel. The existing Drainageway 2 South outfall downstream of the subject site has been improved with the Parkdale Filing No. 1 site. Improvements consist of a triple 12'W x 5'H box culvert capable of conveying existing 100-year flows. Downstream of the Parkdale Filing No. 1 improvements are undersized infrastructure. Flooding will be an issue with the remaining private properties along Drainageway 2 South until future Regional Detention Pond 1060 is constructed. Drainageway 2 South flows continue east through the project and adjacent wetland area and ultimately outfall to Coal Creek.

Drainageway 2 North discharges into Regional WQCV Pond B associated with the Parkdale Filing No. 1 improvements. Pond B is located approximately 1,700 feet to the northeast of the subject site. Regional WQCV Pond B and Drainageway 2 North (Identified as Channel A in Parkdale Filing No. 1) was designed to accommodate developed flows from surrounding offsite parcels. The offsite parcels assumed fully developed were for Parkdale Filing No. 3, 12177 Baseline Road, and all the parcels that front Baseline Road located in Parkdale Filing No. 1 Basin G7. An assumed imperviousness of 80% was assumed for these parcels, which corresponds to mixed use land use. The subject site was considered agricultural land (2% imperviousness) in the Phase III Parkdale Filing No. 1 Drainage Report; however, Parkdale Filing No. 3 is in the Preliminary Plat process and is proposed to be single-family and duplex residences, which have significantly lower imperviousness levels than the original estimate of 80%. The Phase II Drainage Study imperviousness calculations show that the entire Filing No. 3 site is 54.89% impervious. With this change incorporated into the drainage basin calculations, along with assuming the subject site is 75% impervious yields an overall revised imperviousness less than the overall imperviousness calculated in the Phase III Parkdale Filing No. 1 Drainage Report. The composite basin resulting in the combination of Basins G7+G8+G13+G14 in the Phase III Parkdale Filing No. 1 Drainage Report results in a total area of 53.97 acres at 69.3% impervious. When Parkdale Filing No. 3 is modified from 80% impervious to 54.89% impervious and the development of the subject parcel at an assumed 75% impervious; the revised composite basin for G7+G8+G13+G14 becomes 53.54 acres at 66.9% impervious which is less in both total area and imperviousness; which in turn would yield smaller flowrates to Drainageway 2 South than was previously anticipated in the Phase III Parkdale Filing No. 1 Drainage Report. Therefore, detention along the north half of the subject site is unnecessary and is in compliance with the Phase III Parkdale Filing No. 1 Drainage Report.

#### III. DRAINAGE FACILITY DESIGN

#### A. General Concept

#### Existing Drainage Patterns

There are two existing drainage patterns through the site. The north half of the site drains to the northeast and ultimately enters Drainageway 2 North and the south half of the site drains to the southeast and ultimately enters Drainageway 2 South.

#### Compliance with off-site runoff

The north half of the subject site is proposed to be released to Drainageway 2 North without detention. Due to the original assumptions made in the design of Parkdale Filing No. 1; no detention is required on the subject site based on the fact that overall imperviousness values assumed were much higher than anticipated and this allows the subject site to be released to Drainageway 2 North. There would be no negative impact from undetained flows from the subject site as downstream infrastructure has been designed to accommodate developed flows.

The south half of the subject site is proposed to be released to Drainageway 2 South. It is anticipated that channel improvements capable of 1,536 cfs will be constructed as part of the subject sites improvements. The proposed channel capacity is based on the existing condition 100-year flows, which represents a worst case scenario; as the future plans for Regional Pond 1060 will ultimately reduce 100-year flows once constructed.

#### Onsite and Offsite Drainage Concerns

The only existing drainage concern on the subject site is prone to flooding along Drainageway 2 South. Formalized channel improvements are anticipated along the southern portion of the subject site capable of conveying 100-year flows.

#### Anticipated and Proposed Drainage Patterns & Facilities

In general, drainage patterns within the developed Erie Gateway South – Annexation #8 parcel will remain the same. It is anticipated that the north half of the developed site will drain to the north and east. Developed storm flows will be captured and conveyed in the proposed street curb and gutter system to storm drain inlets. Minor storm flows will dictate storm inlet placement based on street classification. Captured flows in the storm drain system will be conveyed to Drainageway 2 North without detention.

The southern half of the developed site will drain to the south and east. Developed storm flows will be captured and conveyed in the proposed street curb and gutter system to storm drain inlets. Minor storm flows will dictate storm inlet placement based on street classification. Captured flows in the storm drain system will be conveyed to a Full Spectrum Detention Pond. It is anticipated that the proposed detention pond will contain the Water Quality Capture Volume, Excess Urban Runoff Volume, and the 100-year storm events.

#### Wetland Mitigation

There are no known wetland areas within the Erie Gateway South – Annexation #8 development area.

#### Design Tables & Charts

Tables and charts utilized for the calculations enclosed in this report are attached in Appendix A of this report. Design tables and criteria were obtained from the 2019 Edition of the Design and Construction of Public Improvements, Town of Erie, Colorado, Section 800 Storm Drainage Facilities, and/or the Urban Storm Drainage Criteria Manual Revised August 2018.

#### Report Methodology

On-site Basins (M1-M4) were analyzed using the rational method. Surrounding regional hydrology has been previously analyzed in the Phase III Parkdale Filing No. 1 Drainage Report. Regional calculations included in this report were done utilizing the Colorado Urban Hydrograph Procedure (CUHP) and routed with EPA Stormwater Management Model (SWMM).

The Proposed on-site detention pond was sized utilizing UD-Detention, Version 3.07 (February 2017) as provided by the Urban Drainage and Flood Control District.

#### Discussion of Referenced Reports

The primary document utilized in this Report is the Phase III Parkdale Filing No. 1 Drainage Report, prepared by KT Engineering, with a last revision date of May 6, 2019. The Town of Erie, Outfall Systems Plan (West of Coal Creek), prepared by RESPEC Consulting Services, dated January 2014 was used in preparation of the Phase III Parkdale Filing No. 1 Drainage Report. The Phase III Parkdale Filing No. 1 Drainage Report is currently undergoing a third review and is not approved at this time.

The Phase II Parkdale Filing No. 3 Drainage Report was also utilized in this report. This drainage report is currently undergoing review and is not approved at this time.

#### **B.** Specific Details

#### Major and Minor Drainage Flows for Major Basins

Drainageway 2 South flowrates within the subject have been previously studied in the Phase III Parkdale Filing No. 1 Drainage Report. Existing calculated 2-year and 100-year flows are 275 cfs and 1,536 cfs, respectively. With the future regional detention Pond 1060 constructed, flows in Drainageway 2 South will be reduced to 67 cfs and 684 cfs for the 2-year and 100-year storm events.

Drainageway 2 North through Parkdale Filing No. 1 was designed as part of the Phase III Parkdale Filing No. 1 Drainage Report. Peak 2-year and 100-year flowrates are 135 cfs and 536 cfs, respectively. Drainageway 2 North through Parkdale Filing No. 1 was designed assuming regional Pond 1060 is in place and diverting the initial pond outflows up to a maximum of 222 cfs through the Drainageway 2 North channel. This scenario represents a worst case scenario in terms of peak flowrates. Existing flowrates without Regional Pond 1060 are calculated as 62 cfs and 362 cfs for the 2-year and 100-year storm events.

As previously discussed, flows from Basins M1 and M2 will enter Drainageway 2 North and will be undetained developed flows. This is acceptable due to the high levels of imperviousness assumed in the design of Drainageway 2 North through the Parkdale Filing No. 1 site. Specifically, the Parkdale Filing No. 3 site was assumed to be much more impervious than is currently planned, and therefore the addition of the developed Erie Gateway South – Annexation #8 parcel would not cause and adverse impact to the drainage system associated with Parkdale Filing No. 1.

Basin M3 is the total tributary area to Pond #1. Pond #1 is a proposed Full Spectrum Detention Pond. It is anticipated that Pond #1 will contain WQCV, EURV, and 100-year detention volumes. Pond #1 will contain an approximate volume of 1.07acre-feet and will outfall into the improved channel section of Drainageway 2 South along Baseline Road.

#### Potential Drainage Problems and Solutions

Developed flows from Basin M3 will need detention in order to not increase flowrates to Drainageway 2 South. Pond #1 is proposed in order to provide detention up to the 100-year storm event and therefore impacts on Drainageway 2 South will be mitigated.

#### Detention Pond Storage and Outlet Design

There is one proposed detention facility located within the Erie Gateway South – Annexation #8 site. Pond #1 is located in Basin M3 and will provide full spectrum (WQCV, EURV, and 100-year) detention for 7.9 acres of the subject site. Pond #1 will provide an approximate EURV and 100-year storage volumes of 0.70 and 1.14 acre feet. Peak flowrates out of Pond #1 for the EURV and 100-year storm events will be approximately 0.2 cfs and 7.5 cfs. The pond outlet structure will consist of a two stage outlet structure with a restrictor plate on the inside of the outlet structure. The WQCV and EURV release rate will be controlled by an orifice plate. The 100-year release rate will be controlled by the restrictor plate located on the outgoing pipe in the outlet structure. The pond will include a trickle channel and a micro-pool will be located just upstream of the outlet structure. Access to the bottom of pond will be graded at 2 percent to the trickle channel. The trickle channel will have a longitudinal slope of 0.5% minimum draining toward the outlet structure.

#### Maintenance and Access of Drainage Facilities

The proposed Drainageway 2 South improved channel will have an access road located above the 100-year water surface elevation for maintenance purposes. Access to the bottom of the Pond #1 outlet structure will be provided for maintenance purposes. It is anticipated that major storm outfalls entering the pond will include a concrete forebay at the pipe outlet. Maintenance access will be provided to the proposed forebay.

#### Drainage Impacts to Downstream Properties

There should be no adverse impacts to downstream properties as a result of the Erie Gateway South – Annexation #8 development. Drainageway 2 North in the Parkdale Filing No. 1 Site (and ultimately Regional WQCV Pond B) has been sized to accommodate undetained flows from Basins M1 and M2. Pond #1is located in the southern half of the subject site will reduce flows from the existing condition and therefore will not adversely impact downstream properties.

#### C. Adaptations from Criteria

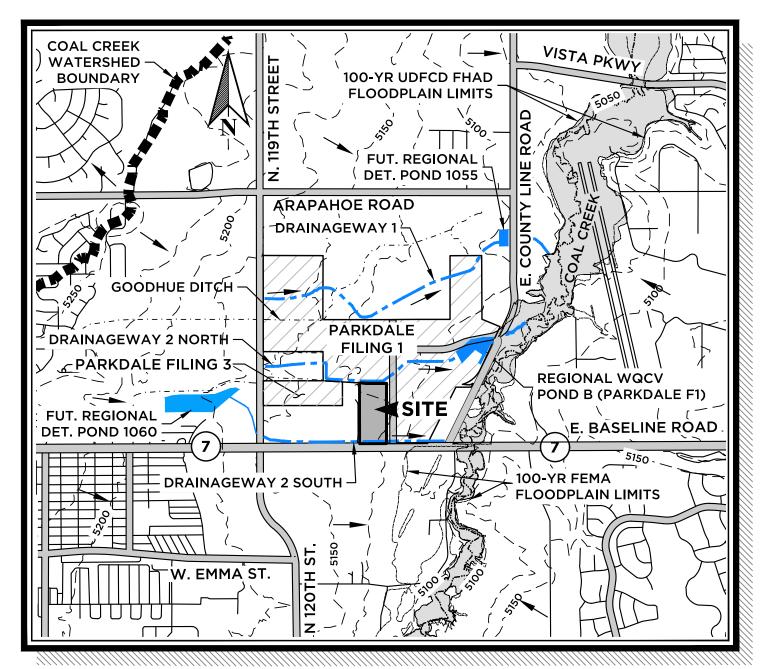
A waiver from Section 814.00 of the Town of Erie's Standards and Specifications that require detention and restricted release rates for all new development. This waiver only applies to Basins M1 and M2, or the northerly drainage outfall of the subject site. This waiver is requested because all downstream infrastructure has been designed assuming no detention from the developed site.

#### IV. SUMMARY

#### A. Conclusion

This site is designed to conform to the criteria set forth in the Town of Erie Standards and Specifications for Design and Construction of Public Improvements (2019 Edition) and the Urban Storm Drainage Criteria Manual (Revised August 2018). The facilities to be built with this subdivision will effectively prevent damage to property due to stormwater runoff and will not create any adverse effects to the downstream properties.

#### V. REFERENCES


- 1. Urban Storm Drainage Criteria Manual Urban Drainage and Flood Control District, Revised August 2018
- Town of Erie Standards and Specifications for Design and Construction of Public Improvements Town of Erie, 2019 Edition
- **3.** Parkdale Filing No. 1 Phase III Drainage Report KT Engineering, Last Revision Date: May 6, 2019
- 4. Parkdale Filing No. 3 Phase III Drainage Report KT Engineering, Dated February 8, 2019
- 5. FIRM Map Number 0813C0439J Federal Emergency Management Agency, Maps Revised December 18, 2012
- 6. Town of Erie, Outfall Systems Plan (West of Coal Creek) RESPEC Consulting Services, Dated January 2014

# **APPENDIX A**

GENERAL LOCATION MAP DESIGN CHARTS & TABLES

SURFACE FLOW DIRECTION ARROW

# GENERAL LOCATION MAP



Land Use or Zoning	Design Storm Return Perio	od
	Initial Storm	Major Storm
Residential	2-year	100-year
Commercial and Business	5-year	100-year
Public Building Areas	5-year	100-year
Parks, Greenbelts, etc.	2-year	100-year

813.03 Runoff Computations, Colorado Urban Hydrograph Procedure (CUHP)

The CUHP method is generally applicable to drainage basins greater than 90 acres. However, the CUHP is required for watershed areas larger than 160-acres. The procedures for the CUHP, as explained in the Urban Storm Drainage Criteria Manual, shall be followed in the preparation of drainage reports and storm drainage facility designs in the Town. The CUHP program requires the input of a design storm, either as a detailed hyetograph or as a 1-hour rainfall depth. The program for the latter using the 2-hour storm distribution recommended in the Urban Storm Drainage Criteria Manual generates a detailed hyetograph distribution. The 1-hour rainfall depths for the Town of Erie are presented in Table 800-2.

#### Table 800-2 TOWN OF ERIE ONE-HOUR RAINFALL DEPTH

Design Storm	Rainfall Depth (in.)
2-Year	0.81
5-Year	1.11
10-Year	1.39
25-Year	1.84
50-Year	2.24
100-Year	2.68
500-Year	3.89

The hydrograph from the CUHP program must be routed through any proposed conveyance facility using the Storm Water Management Model (SWMM) or a similar method approved by the Town Engineer.

813.04 Runoff Computations, Rational Method

The Rational Method will be utilized for sizing storm sewers and for determining runoff magnitude from un-sewered areas. The limit of application of the Rational Method is approximately 160 acres. When the drainage basin exceeds 160 acres, the CUHP method shall be used.

The procedures for the Rational Method, as explained in the Urban Storm Drainage Criteria Manual, shall be followed in the preparation of drainage reports in the Town.

813.05 Runoff Coefficients

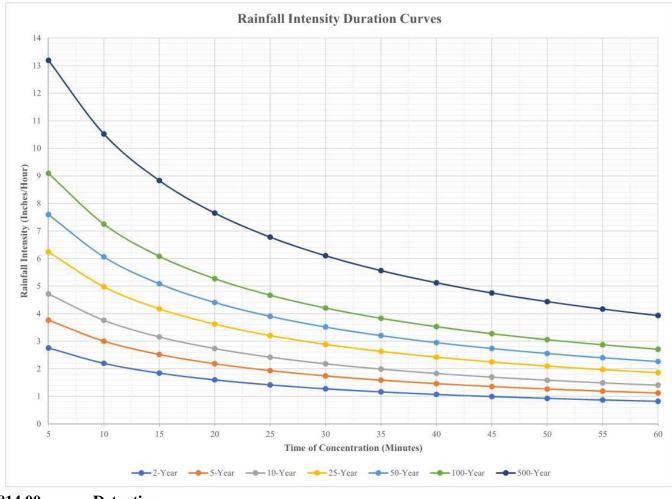
<u>Rational method runoff coefficients</u>: The runoff coefficient (C) to be used in conjunction with the Rational Method will be calculated using the percent imperviousness shown in Table 800-3 as explained in the Urban Storm Drainage Criteria Manual.

LAND USE OR SURFACE	PERCENT
CHARACTERISTICS	IMPERVIOUS
Business	
Commercial Areas	95
Neighborhood Areas	75
Residential Lots (Lot Area Only):	
Single-Family	
2.5 Acres or Larger	12
0.75 – 2.49 Acres	20
0.25 – 0.74 Acres	30
0.24 Acres or Less	45
Apartments	75
Industrial:	
Light Areas	80
Heavy Areas	90
Parks, Cemeteries	10
Playgrounds	25
Schools	55
Railroad Yard Areas	50
Undeveloped Areas:	
Historic Flow Analysis	2
Greenbelts, Agricultural	2
Offsite Flow Analysis	45
(when land use not defined)	
Streets:	
Paved	100
Gravel (Packed)	40
Drives and Walks	90
Roofs	90
Lawns, Sandy Soil	2
Lawns, Clay Soil	2

# TABLE 800-3PERCENT IMPERVIOUS FOR RATIONAL METHOD

Note: These Rational Method coefficients may not be valid for large basins.

813.06 Rainfall Intensities


The rainfall intensities to be used in the computation of runoff using the Rational Method shall be obtained from the Rainfall Intensity Duration Curves for the Town of Erie, included in these STANDARDS AND SPECIFICATIONS, or can be computed using the following equation.

$$I = \frac{28.5 P_1}{(10 + T_d)^{0.786}}$$

Where:

I = rainfall intensity (inches per hour)  $P_1$  = 1-hour point rainfall depth (inches)

 $T_d$  = storm duration (minutes)



814.00 Detention

814.01 General

Total or Effective	NRCS Hydrologic Soil Group A									
% Impervious	2-Year	5-Year	10-Year	25-Year	_	100-Year	500-Year			
2%	0.01	0.01	0.01	0.01	0.04	0.13	0.27			
5%	0.02	0.02	0.02	0.03	0.07	0.15	0.29			
10%	0.04	0.05	0.02	0.07	0.11	0.19	0.32			
15%	0.07	0.08	0.08	0.1	0.15	0.23	0.35			
20%	0.1	0.11	0.12	0.14	0.2	0.27	0.38			
25%	0.14	0.15	0.16	0.19	0.24	0.3	0.42			
30%	0.18	0.19	0.2	0.23	0.28	0.34	0.45			
35%	0.21	0.23	0.24	0.27	0.32	0.38	0.48			
40%	0.25	0.27	0.28	0.32	0.37	0.42	0.51			
45%	0.3	0.31	0.33	0.36	0.41	0.46	0.54			
50%	0.34	0.36	0.37	0.41	0.45	0.5	0.58			
55%	0.39	0.4	0.42	0.45	0.49	0.54	0.61			
60%	0.43	0.45	0.47	0.5	0.54	0.58	0.64			
65%	0.48	0.5	0.51	0.54	0.58	0.62	0.67			
70%	0.53	0.55	0.56	0.59	0.62	0.65	0.71			
75%	0.58	0.6	0.61	0.64	0.66	0.69	0.74			
80%	0.63	0.65	0.66	0.69	0.71	0.73	0.77			
85%	0.68	0.7	0.71	0.74	0.75	0.77	0.8			
90%	0.73	0.75	0.77	0.79	0.79	0.81	0.84			
95%	0.79	0.81	0.82	0.83	0.84	0.85	0.87			
100%	0.84	0.86	0.87	0.88	0.88	0.89	0.9			
Total or Effective			NRCS Hydr	ologic Soil	Group B					
% Impervious	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	500-Year			
2%	0.01	0.01	0.07	0.26	0.34	0.44	0.54			
5%	0.00	0.00	0.1	0.28	0.36	0.15	~ ~ ~			
570	0.03	0.03	0.1	0.20	0.50	0.45	0.55			
10%	0.03	0.03	0.14	0.31	0.30	0.45	0.55 0.57			
10%	0.06	0.07	0.14	0.31	0.38	0.47	0.57			
10% 15%	0.06 0.09	0.07 0.11	0.14 0.18	0.31 0.34	0.38 0.41	0.47 0.5	0.57 0.59			
10% 15% 20%	0.06 0.09 0.13	0.07 0.11 0.15	0.14 0.18 0.22	0.31 0.34 0.38	0.38 0.41 0.44	0.47 0.5 0.52	0.57 0.59 0.61			
10%           15%           20%           25%	0.06 0.09 0.13 0.17	0.07 0.11 0.15 0.19	0.14 0.18 0.22 0.26	0.31 0.34 0.38 0.41	0.38 0.41 0.44 0.47	0.47 0.5 0.52 0.54	0.57 0.59 0.61 0.63			
10%           15%           20%           25%           30%	0.06 0.09 0.13 0.17 0.2	0.07 0.11 0.15 0.19 0.23	0.14 0.18 0.22 0.26 0.3	0.31 0.34 0.38 0.41 0.44	0.38 0.41 0.44 0.47 0.49	0.47 0.5 0.52 0.54 0.57	0.57 0.59 0.61 0.63 0.65			
10%           15%           20%           25%           30%           35%	0.06 0.09 0.13 0.17 0.2 0.24	0.07 0.11 0.15 0.19 0.23 0.27	0.14 0.18 0.22 0.26 0.3 0.34	0.31 0.34 0.38 0.41 0.44 0.47	0.38 0.41 0.44 0.47 0.49 0.52	0.47 0.5 0.52 0.54 0.57 0.59	$\begin{array}{r} 0.57 \\ 0.59 \\ 0.61 \\ 0.63 \\ 0.65 \\ 0.66 \end{array}$			
10%           15%           20%           25%           30%           35%           40%	0.06 0.09 0.13 0.17 0.2 0.24 0.29	0.07 0.11 0.15 0.19 0.23 0.27 0.32	0.14 0.18 0.22 0.26 0.3 0.34 0.38	$\begin{array}{r} 0.31 \\ 0.34 \\ 0.38 \\ 0.41 \\ 0.44 \\ 0.47 \\ 0.5 \end{array}$	$\begin{array}{r} 0.38 \\ 0.41 \\ 0.44 \\ 0.47 \\ 0.49 \\ 0.52 \\ 0.55 \end{array}$	0.47 0.5 0.52 0.54 0.57 0.59 0.61	$\begin{array}{r} 0.57 \\ 0.59 \\ 0.61 \\ 0.63 \\ 0.65 \\ 0.66 \\ 0.68 \end{array}$			
10%           15%           20%           25%           30%           35%           40%           45%	0.06 0.09 0.13 0.17 0.2 0.24 0.29 0.33	0.07 0.11 0.15 0.19 0.23 0.27 0.32 0.36	0.14 0.18 0.22 0.26 0.3 0.34 0.38 0.42	$\begin{array}{r} 0.31 \\ 0.34 \\ 0.38 \\ 0.41 \\ 0.44 \\ 0.47 \\ 0.5 \\ 0.53 \end{array}$	$\begin{array}{r} 0.38 \\ 0.41 \\ 0.44 \\ 0.47 \\ 0.49 \\ 0.52 \\ 0.55 \\ 0.58 \end{array}$	$\begin{array}{r} 0.47 \\ 0.5 \\ 0.52 \\ 0.54 \\ 0.57 \\ 0.59 \\ 0.61 \\ 0.64 \end{array}$	$\begin{array}{c} 0.57 \\ 0.59 \\ 0.61 \\ 0.63 \\ 0.65 \\ 0.66 \\ 0.68 \\ 0.7 \end{array}$			
10%           15%           20%           25%           30%           35%           40%           45%           50%	$\begin{array}{r} 0.06\\ 0.09\\ 0.13\\ 0.17\\ 0.2\\ 0.24\\ 0.29\\ 0.33\\ 0.37\\ \end{array}$	$\begin{array}{r} 0.07 \\ 0.11 \\ 0.15 \\ 0.19 \\ 0.23 \\ 0.27 \\ 0.32 \\ 0.36 \\ 0.4 \end{array}$	$\begin{array}{c} 0.14 \\ 0.18 \\ 0.22 \\ 0.26 \\ 0.3 \\ 0.34 \\ 0.38 \\ 0.42 \\ 0.46 \end{array}$	$\begin{array}{r} 0.31 \\ 0.34 \\ 0.38 \\ 0.41 \\ 0.44 \\ 0.47 \\ 0.5 \\ 0.53 \\ 0.56 \end{array}$	$\begin{array}{r} 0.38 \\ 0.41 \\ 0.44 \\ 0.47 \\ 0.49 \\ 0.52 \\ 0.55 \\ 0.58 \\ 0.61 \end{array}$	$\begin{array}{c} 0.47 \\ 0.5 \\ 0.52 \\ 0.54 \\ 0.57 \\ 0.59 \\ 0.61 \\ 0.64 \\ 0.66 \end{array}$	$\begin{array}{c} 0.57\\ 0.59\\ 0.61\\ 0.63\\ 0.65\\ 0.66\\ 0.68\\ 0.7\\ 0.72\\ \end{array}$			
10%           15%           20%           25%           30%           35%           40%           45%           50%           55%	$\begin{array}{c} 0.06\\ 0.09\\ 0.13\\ 0.17\\ 0.2\\ 0.24\\ 0.29\\ 0.33\\ 0.37\\ 0.42\\ \end{array}$	$\begin{array}{c} 0.07 \\ 0.11 \\ 0.15 \\ 0.19 \\ 0.23 \\ 0.27 \\ 0.32 \\ 0.36 \\ 0.4 \\ 0.45 \end{array}$	$\begin{array}{c} 0.14 \\ 0.18 \\ 0.22 \\ 0.26 \\ 0.3 \\ 0.34 \\ 0.38 \\ 0.42 \\ 0.46 \\ 0.5 \end{array}$	$\begin{array}{r} 0.31 \\ 0.34 \\ 0.38 \\ 0.41 \\ 0.44 \\ 0.47 \\ 0.5 \\ 0.53 \\ 0.56 \\ 0.6 \end{array}$	$\begin{array}{r} 0.38\\ 0.41\\ 0.44\\ 0.47\\ 0.49\\ 0.52\\ 0.55\\ 0.58\\ 0.61\\ 0.63\\ \end{array}$	$\begin{array}{c} 0.47 \\ 0.5 \\ 0.52 \\ 0.54 \\ 0.57 \\ 0.59 \\ 0.61 \\ 0.64 \\ 0.66 \\ 0.68 \end{array}$	$\begin{array}{c} 0.57\\ 0.59\\ 0.61\\ 0.63\\ 0.65\\ 0.66\\ 0.68\\ 0.7\\ 0.72\\ 0.74\\ \end{array}$			
10%           15%           20%           25%           30%           35%           40%           45%           50%           55%           60%	$\begin{array}{r} 0.06\\ 0.09\\ 0.13\\ 0.17\\ 0.2\\ 0.24\\ 0.29\\ 0.33\\ 0.37\\ 0.42\\ 0.46\\ \end{array}$	$\begin{array}{r} 0.07\\ 0.11\\ 0.15\\ 0.19\\ 0.23\\ 0.27\\ 0.32\\ 0.36\\ 0.4\\ 0.45\\ 0.49\\ \end{array}$	$\begin{array}{c} 0.14 \\ 0.18 \\ 0.22 \\ 0.26 \\ 0.3 \\ 0.34 \\ 0.38 \\ 0.42 \\ 0.46 \\ 0.5 \\ 0.54 \end{array}$	$\begin{array}{c} 0.31 \\ 0.34 \\ 0.38 \\ 0.41 \\ 0.44 \\ 0.47 \\ 0.5 \\ 0.53 \\ 0.56 \\ 0.6 \\ 0.63 \end{array}$	$\begin{array}{r} 0.38\\ 0.41\\ 0.44\\ 0.47\\ 0.49\\ 0.52\\ 0.55\\ 0.58\\ 0.61\\ 0.63\\ 0.66\\ \end{array}$	$\begin{array}{c} 0.47\\ 0.5\\ 0.52\\ 0.54\\ 0.57\\ 0.59\\ 0.61\\ 0.64\\ 0.66\\ 0.68\\ 0.71\\ \end{array}$	$\begin{array}{c} 0.57\\ 0.59\\ 0.61\\ 0.63\\ 0.65\\ 0.66\\ 0.68\\ 0.7\\ 0.72\\ 0.74\\ 0.76\\ \end{array}$			
10%           15%           20%           25%           30%           35%           40%           45%           50%           55%           60%           65%	$\begin{array}{c} 0.06\\ 0.09\\ 0.13\\ 0.17\\ 0.2\\ 0.24\\ 0.29\\ 0.33\\ 0.37\\ 0.42\\ 0.46\\ 0.5\\ \end{array}$	$\begin{array}{c} 0.07\\ 0.11\\ 0.15\\ 0.19\\ 0.23\\ 0.27\\ 0.32\\ 0.36\\ 0.4\\ 0.45\\ 0.49\\ 0.54\\ \end{array}$	$\begin{array}{c} 0.14\\ 0.18\\ 0.22\\ 0.26\\ 0.3\\ 0.34\\ 0.38\\ 0.42\\ 0.46\\ 0.5\\ 0.54\\ 0.58\\ \end{array}$	$\begin{array}{c} 0.31 \\ 0.34 \\ 0.38 \\ 0.41 \\ 0.44 \\ 0.47 \\ 0.5 \\ 0.53 \\ 0.56 \\ 0.66 \\ 0.63 \\ 0.66 \end{array}$	$\begin{array}{c} 0.38\\ 0.41\\ 0.41\\ 0.47\\ 0.49\\ 0.52\\ 0.55\\ 0.58\\ 0.61\\ 0.63\\ 0.66\\ 0.69\\ \end{array}$	$\begin{array}{c} 0.47\\ 0.5\\ 0.52\\ 0.54\\ 0.57\\ 0.59\\ 0.61\\ 0.64\\ 0.66\\ 0.68\\ 0.71\\ 0.73\\ \end{array}$	$\begin{array}{c} 0.57\\ 0.59\\ 0.61\\ 0.63\\ 0.65\\ 0.66\\ 0.68\\ 0.7\\ 0.72\\ 0.74\\ 0.76\\ 0.77\\ \end{array}$			
10%           15%           20%           25%           30%           35%           40%           45%           50%           55%           60%           65%           70%	$\begin{array}{c} 0.06\\ 0.09\\ 0.13\\ 0.17\\ 0.2\\ 0.24\\ 0.29\\ 0.33\\ 0.37\\ 0.42\\ 0.46\\ 0.5\\ 0.55\\ \end{array}$	$\begin{array}{c} 0.07\\ 0.11\\ 0.15\\ 0.19\\ 0.23\\ 0.27\\ 0.32\\ 0.36\\ 0.4\\ 0.45\\ 0.49\\ 0.54\\ 0.58\\ \end{array}$	$\begin{array}{c} 0.14\\ 0.18\\ 0.22\\ 0.26\\ 0.3\\ 0.34\\ 0.38\\ 0.42\\ 0.46\\ 0.5\\ 0.54\\ 0.58\\ 0.62\\ \end{array}$	$\begin{array}{c} 0.31 \\ 0.34 \\ 0.38 \\ 0.41 \\ 0.44 \\ 0.47 \\ 0.5 \\ 0.53 \\ 0.56 \\ 0.66 \\ 0.66 \\ 0.69 \\ \end{array}$	$\begin{array}{c} 0.38\\ 0.41\\ 0.44\\ 0.47\\ 0.49\\ 0.52\\ 0.55\\ 0.58\\ 0.61\\ 0.63\\ 0.66\\ 0.69\\ 0.72\\ \end{array}$	$\begin{array}{c} 0.47\\ 0.5\\ 0.52\\ 0.54\\ 0.57\\ 0.59\\ 0.61\\ 0.64\\ 0.66\\ 0.68\\ 0.71\\ 0.73\\ 0.75\\ \end{array}$	$\begin{array}{c} 0.57\\ 0.59\\ 0.61\\ 0.63\\ 0.65\\ 0.66\\ 0.68\\ 0.7\\ 0.72\\ 0.74\\ 0.76\\ 0.77\\ 0.79\\ \end{array}$			
10%           15%           20%           25%           30%           35%           40%           45%           50%           55%           60%           65%           70%           75%	$\begin{array}{c} 0.06\\ 0.09\\ 0.13\\ 0.17\\ 0.2\\ 0.24\\ 0.29\\ 0.33\\ 0.37\\ 0.42\\ 0.46\\ 0.5\\ 0.55\\ 0.6\\ \end{array}$	$\begin{array}{c} 0.07\\ 0.11\\ 0.15\\ 0.19\\ 0.23\\ 0.27\\ 0.32\\ 0.36\\ 0.4\\ 0.45\\ 0.49\\ 0.54\\ 0.58\\ 0.63\\ \end{array}$	$\begin{array}{c} 0.14\\ 0.18\\ 0.22\\ 0.26\\ 0.3\\ 0.34\\ 0.38\\ 0.42\\ 0.46\\ 0.5\\ 0.54\\ 0.58\\ 0.62\\ 0.66\\ \end{array}$	$\begin{array}{c} 0.31 \\ 0.34 \\ 0.38 \\ 0.41 \\ 0.44 \\ 0.47 \\ 0.5 \\ 0.53 \\ 0.56 \\ 0.66 \\ 0.63 \\ 0.66 \\ 0.69 \\ 0.72 \\ \end{array}$	$\begin{array}{c} 0.38\\ 0.41\\ 0.44\\ 0.47\\ 0.49\\ 0.52\\ 0.55\\ 0.58\\ 0.61\\ 0.63\\ 0.66\\ 0.69\\ 0.72\\ 0.75\\ \end{array}$	$\begin{array}{c} 0.47\\ 0.5\\ 0.52\\ 0.54\\ 0.57\\ 0.59\\ 0.61\\ 0.64\\ 0.66\\ 0.68\\ 0.71\\ 0.73\\ 0.75\\ 0.78\\ \end{array}$	$\begin{array}{c} 0.57\\ 0.59\\ 0.61\\ 0.63\\ 0.65\\ 0.66\\ 0.68\\ 0.7\\ 0.72\\ 0.74\\ 0.76\\ 0.77\\ 0.79\\ 0.81\\ \end{array}$			
10%           15%           20%           25%           30%           35%           40%           45%           50%           55%           60%           65%           70%           75%           80%	$\begin{array}{c} 0.06\\ 0.09\\ 0.13\\ 0.17\\ 0.2\\ 0.24\\ 0.29\\ 0.33\\ 0.37\\ 0.42\\ 0.46\\ 0.5\\ 0.55\\ 0.6\\ 0.64\\ \end{array}$	$\begin{array}{c} 0.07\\ 0.11\\ 0.15\\ 0.19\\ 0.23\\ 0.27\\ 0.32\\ 0.36\\ 0.4\\ 0.45\\ 0.49\\ 0.54\\ 0.58\\ 0.63\\ 0.67\\ \end{array}$	$\begin{array}{c} 0.14\\ 0.18\\ 0.22\\ 0.26\\ 0.3\\ 0.34\\ 0.38\\ 0.42\\ 0.46\\ 0.5\\ 0.54\\ 0.58\\ 0.62\\ 0.66\\ 0.7\\ \end{array}$	$\begin{array}{c} 0.31 \\ 0.34 \\ 0.38 \\ 0.41 \\ 0.47 \\ 0.5 \\ 0.53 \\ 0.56 \\ 0.66 \\ 0.63 \\ 0.66 \\ 0.69 \\ 0.72 \\ 0.75 \\ \end{array}$	$\begin{array}{c} 0.38\\ 0.41\\ 0.44\\ 0.47\\ 0.49\\ 0.52\\ 0.55\\ 0.58\\ 0.61\\ 0.63\\ 0.66\\ 0.69\\ 0.72\\ 0.75\\ 0.77\\ \end{array}$	$\begin{array}{c} 0.47\\ 0.5\\ 0.52\\ 0.54\\ 0.57\\ 0.59\\ 0.61\\ 0.64\\ 0.66\\ 0.68\\ 0.71\\ 0.73\\ 0.75\\ 0.78\\ 0.8\\ \end{array}$	0.57 0.59 0.61 0.63 0.65 0.66 0.68 0.7 0.72 0.74 0.76 0.77 0.79 0.81 0.83			
10%           15%           20%           25%           30%           35%           40%           45%           50%           55%           60%           65%           70%           75%           80%           85%	$\begin{array}{c} 0.06\\ 0.09\\ 0.13\\ 0.17\\ 0.2\\ 0.24\\ 0.29\\ 0.33\\ 0.37\\ 0.42\\ 0.46\\ 0.5\\ 0.55\\ 0.6\\ 0.64\\ 0.69\\ \end{array}$	$\begin{array}{c} 0.07\\ 0.11\\ 0.15\\ 0.19\\ 0.23\\ 0.27\\ 0.32\\ 0.36\\ 0.4\\ 0.45\\ 0.49\\ 0.54\\ 0.58\\ 0.63\\ 0.67\\ 0.72\\ \end{array}$	$\begin{array}{c} 0.14\\ 0.18\\ 0.22\\ 0.26\\ 0.3\\ 0.34\\ 0.38\\ 0.42\\ 0.46\\ 0.5\\ 0.54\\ 0.58\\ 0.62\\ 0.66\\ 0.7\\ 0.74\\ \end{array}$	$\begin{array}{c} 0.31\\ 0.34\\ 0.38\\ 0.41\\ 0.47\\ 0.5\\ 0.53\\ 0.56\\ 0.66\\ 0.63\\ 0.66\\ 0.69\\ 0.72\\ 0.75\\ 0.78\\ \end{array}$	$\begin{array}{c} 0.38\\ 0.41\\ 0.44\\ 0.47\\ 0.49\\ 0.52\\ 0.55\\ 0.58\\ 0.61\\ 0.63\\ 0.66\\ 0.69\\ 0.72\\ 0.75\\ 0.77\\ 0.8\\ \end{array}$	$\begin{array}{c} 0.47\\ 0.5\\ 0.52\\ 0.54\\ 0.57\\ 0.59\\ 0.61\\ 0.64\\ 0.66\\ 0.68\\ 0.71\\ 0.73\\ 0.75\\ 0.78\\ 0.8\\ 0.82\\ \end{array}$	$\begin{array}{c} 0.57\\ 0.59\\ 0.61\\ 0.63\\ 0.65\\ 0.66\\ 0.68\\ 0.7\\ 0.72\\ 0.74\\ 0.76\\ 0.77\\ 0.79\\ 0.81\\ 0.83\\ 0.85\\ \end{array}$			

Table 6-5.Runoff coefficients, c

#### 2.3 Limitations

The Rational Method is the simplistic approach for estimating the peak flow rate and total runoff volume from a design rainstorm in a given catchment. Under the assumption of uniform hydrologic losses, the method is limited to catchments smaller than 90 acres. Under the condition of composite soils and land uses, use an area-weighted method to derive the catchment's hydrologic parameters.

The greatest drawback to the Rational Method is that it normally provides only one point (the peak flow rate) on the runoff hydrograph. When the areas become complex and where subcatchments come together, the Rational Method will tend to overestimate the actual flow, which results in oversizing of drainage facilities. The Rational Method provides no means or methodology to generate and route hydrographs through drainage facilities. One reason the Rational Method is limited to small areas is that good design practice requires the routing of hydrographs for larger catchments to achieve an economically sound design.

Another disadvantage of the Rational Method is that with typical design procedures, one normally assumes that all of the design flow is collected at the design point and that there is no water running overland to the next design point. This is not an issue of the Rational Method but of the design procedure. Use additional analysis to account for this scenario.

#### 2.4 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is linearly proportional to the average rainfall intensity during the time required for water to flow from the most remote part of the drainage area to the design point. In practice, the time of concentration is empirically estimated along the selected waterway through the catchment.

To calculate the time of concentration, first divide the waterway into overland flow length and channelized flow lengths, according to the channel characteristics. For urban areas (tributary areas of greater than 20 percent impervious), the time of concentration,  $t_c$ , consists of an initial time or overland flow time,  $t_i$ , plus the channelized flow travel time,  $t_t$ , through the storm drain, paved gutter, roadside ditch, or channel. For non-urban areas, the time of concentration consists of an overland flow time,  $t_i$ , plus the time of travel in a defined drainage path, such as a swale, channel, or stream. Estimate the channelized travel time portion,  $t_t$ , of the time of concentration from the hydraulic properties of the conveyance element. Initial or overland flow time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. Compute the time of concentration for both urban and non-urban areas using Equation 6-2:

$$t_c = t_i + t_t$$

Equation 6-2

Where:

- $t_c$  = computed time of concentration (minutes)
- $t_i$  = overland (initial) flow time (minutes)
- $t_t$  = channelized flow time (minutes).

#### 2.4.1 Initial or Overland Flow Time

The initial or overland flow time,  $t_i$ , may be calculated using Equation 6-3:

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$$

Equation 6-3

Where:

 $t_i$  = overland (initial) flow time (minutes)  $C_5$  = runoff coefficient for 5-year frequency (from Table 6-4)  $L_i$  = length of overland flow (ft)  $S_o$  = average slope along the overland flow path (ft/ft).

Equation 6-3 is adequate for distances up to 300 feet in urban areas and 500 feet in rural areas. Note that in a highly urbanized catchment, the overland flow length is typically shorter than 300 feet due to effective man-made drainage systems that collect and convey runoff.

#### 2.4.2 Channelized Flow Time

The channelized flow time (travel time) is calculated using the hydraulic properties of the conveyance element. The channelized flow time,  $t_i$ , is estimated by dividing the length of conveyance by the velocity. The following equation, Equation 6-4 (Guo 2013), can be used to determine the flow velocity in conjunction with Table 6-2 for the conveyance factor.

$$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$$

Equation 6-4

Where:

 $t_t$  = channelized flow time (travel time, min)

 $L_t$  = waterway length (ft)

 $S_o$  = waterway slope (ft/ft)

 $V_t$  = travel time velocity (ft/sec) = K $\sqrt{S_o}$ 

K = NRCS conveyance factor (see Table 6-2).

Table 6-2. NRCS Conveyance factors, K								
Type of Land Surface	Conveyance Factor, K							
Heavy meadow	2.5							
Tillage/field	5							
Short pasture and lawns	7							
Nearly bare ground	10							
Grassed waterway	15							
Paved areas and shallow paved swales	20							

The time of concentration,  $t_c$ , is the sum of the initial (overland) flow time,  $t_i$ , and the channelized flow time,  $t_i$ , as per Equation 6-2.

#### 2.4.3 First Design Point Time of Concentration in Urban Catchments

Equation 6-4 was solely determined by the waterway characteristics and using a set of empirical formulas. A calibration study between the Rational Method and the Colorado Urban Hydrograph Procedure (CUHP) suggests that the time of concentration shall be the lesser of the values calculated by Equation 6-2 and Equation 6-5 (Guo and Urbana 2013).

 $t_c = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$ 

Equation 6-5

Where:

 $t_c$  = minimum time of concentration for first design point when less than t_c from Equation 6-1.

 $L_t$  = length of channelized flow path (ft)

i = imperviousness (expressed as a decimal)

 $S_t$  = slope of the channelized flow path (ft/ft).

Equation 6-5 is the regional time of concentration that warrants the best agreement on peak flow predictions between the Rational Method and CUHP when the imperviousness of the tributary area is greater than 20 percent. It was developed using the UDFCD database that includes 295 sample urban catchments under 2-, 5-, 10-, 50, and 100-yr storm events (MacKenzie 2010). It suggests that both initial flow time and channelized flow velocity are directly related to the catchment's imperviousness (Guo and MacKenzie 2013).

The first design point is defined as a node where surface runoff enters the storm drain system. For example, all inlets are "first design points" because inlets are designed to accept flow into the storm drain.

Typically, but not always, Equation 6-5 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, add the travel time for each relevant segment downstream.

#### 2.4.4 Minimum Time of Concentration

Use a minimum  $t_c$  value of 5 minutes for urbanized areas and a minimum  $t_c$  value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

#### 2.4.5 Common Errors in Calculating Time of Concentration

A common mistake in urbanized areas is to assume travel velocities that are too slow. Another common error is to not check the runoff peak resulting from only part of the catchment. Sometimes a lower portion of the catchment or a highly impervious area produces a larger peak than that computed for the whole catchment. This error is most often encountered when the catchment is long or the upper portion contains grassy open land and the lower portion is more developed.

# **APPENDIX B**

HYDROLOGIC CALCULATIONS

PROJECT:	PARKDALE - PH. III DRAINAGE
SHEET TITLE:	COMPOSITE RUNOFF FACTORS

														_
Basin	Total Area	Total Area	Park Areas	Asphalt Streets	Drives and Walks	Agriculture/Open	Mixed Use	Parkdale Filing 3	Annexation #8	Sc	il Type "B" Co	mposite Rund	off Factors	
Name	(Acres)	(SF)	(SF)	(SF)	(SF)	Space (SF)	(SF)	(SF)	Developed (SF)	C ₂	C₅	C ₁₀₀	1%	
G7	46.19	2012074				21739	1990335			0.63	0.66	0.80	79.16	From Parkdale PH III. Drainage
G8	7.10	309265				293819	15446			0.03	0.03	0.45	5.90	From Parkdale PH III. Drainage
G13	0.63	27490	11288	13814	2388					0.48	0.51	0.72	62.18	From Parkdale PH III. Drainage
G14	0.04	1897	673	968	256					0.52	0.55	0.74	66.72	From Parkdale PH III. Drainage
G7+G8+G13+G14 (Updated)	53.54	2332245					849681	1156100	326464	0.52	0.55	0.74	66.85	Revised w/ Parkdale Filing 3 & Annexation #
G7+G8+G13+G14 (As Designed)	53.97	2350726	11961	14782	2644	315558	2005781			0.54	0.57	0.75	69.31	From Parkdale PH III. Drainage

Land Use	Imp., I %
Park Areas	10.00
Asphalt Streets	100.00
Concrete Drives and Walks / Roofs	90.00
Agriculture/Open Space (OSP)	2.00
Mixed Use (OSP)	80.00
Parkdale Filing 3 (Actual)	54.89
Annexation #8 Developed	75.00

IMP

#### ERIE GATEWAY SOUTH – ANNEXATION #8 Composite runoff factors

Basin	Total Area	Total Area	So	il Type "B" Co	mposite Runof	f Factors	]
Name	(Acres)	(SF)	C ₂	C₅	C ₁₀₀	۱%	
M1	1.02	44275	0.60	0.63	0.78	75.00	Single Family, Local Streets, Par
M2	6.48	282189	0.60	0.63	0.78	75.00	Single Family, Local Streets, Pa
M3	8.40	365881	0.60	0.63	0.78	75.00	Single Family, Local Streets, Par
M4	1.17	50750	0.01	0.01	0.44	2.00	Channel Improvements

PROJECT:

SHEET TITLE:

									TRAVE	L TIME						Tc CHEC	<b>(</b>			FINAL	Time	
				TIME (Ti)	[Max. 30	07				(Tt)					(Urb	anized Ba	sins)			Тс	to	
Basin	Area	5Yr.	Elev	ations	Dist.	Slope	Ti	Ele	vations	Dist.	Slope		Vel.	Tt		Length	Avg Slope	Imperv.	Тс		Peak**	Remarks
No.	(acres)	co-eff.	Upstream	Downstream	(ft)	(ft/ft)	(min)	Upstream	Downstream	(ft)	(ft/ft)	*	(fps)	(min)	Тс	(ft)	(ft/ft)		(min)	(min)	Flow	
M1	1.02	0.63	5133.5	5128.8	168	0.028	7.9	5128.8	5128.7	1	0.100	5.0	4.7	0.0	7.9	1	0.10	0.75	13.3	7.9	7.93	Developed
M2	6.48	0.63	5141.4	5136.4	152	0.033	7.1	5136.4	5124.8	443	0.026	6.0	3.2	2.3	9.4	443	0.03	0.75	15.6	9.4	9.42	Developed
M3	8.40	0.63	5144.2	5143.4	33	0.024	3.7	5143.4	5131.5	950	0.013	6.0	2.2	7.1	10.8	950	0.01	0.75	20.5	10.8	10.76	Developed
M4	1.17	0.01	5141.4	5134.0	58	0.128	6.5	5134.0	5118.6	530	0.029	5.0	2.6	3.5	10.0	530	0.03	0.02	31.2	10.0	9.97	Developed

#### PROJECT: ERIE GATEWAY SOUTH - ANNEXATION #8 SHEET TITLE: TIME OF CONCENTRATION

* Type of Land Surface for Overland Travel Time	VELOCITY COEFFI	CIENTS
1 = Heavy Meadow	1 2	2.5
2 = Tillage / Field	2	5
3 = Short pasture & lawns	3	7
4 = Nearly bare ground	4	10
5 = Grassed waterway	5	15
6 = Paved areas and shallow paved swales	6	20

#### PROJECT: ERIE GATEWAY SOUTH - ANNEXATION #8 SHEET TITLE: SF-3 FORM (2-YR)

			DIRECT RU	JNOFF					TOTAL	RUNOFF			STRE	EET/CH/	ANNEL		PIF	ΡE	TF	RAVEL TI	ME	
BASIN	DESIGN POINT	AREA DESIGN.	AREA (Acres)	RUNOFF COEFF	Tc (min)	C A (Acres)	l (infhour)	Q (cfs)	Tc (min)	(C A) (Acres)	l (in/hour)	Q (cfs)	SLOPE (%)	STREET FLOW (ds)	CARRYOVER (ds)	PIPE FLOW (ds)	SLOPE (%)	PIPE SIZE (in)	LENGTH (ft)	VELOCITY (fps)	Tt (min)	REMARKS
M1	1	M1	1.02	0.60	7.9	0.61	2.78	1.70														Direct Flow to DP 1
M2	2	M2	6.48	0.60	9.4	3.89	2.39	9.3														Direct Flow to DP 2
M3	4	M3	8.40	0.60	10.8	5.04	2.14	10.8														Direct Flow to DP 3
M4	6	M4	1.17	0.01	10.0	0.01	2.26	0.03														Direct Flow to DP 4

#### PROJECT: ERIE GATEWAY SOUTH - ANNEXATION #8 SHEET TITLE: SF-3 FORM (100-YR)

			DIRECT RU	JNOFF					TOTAL	RUNOFF			STRE	EET/CH/	ANNEL		PIF	Έ	TF	RAVEL TI	ME	
BASIN	DESIGN POINT	AREA DESIGN.	AREA (Acres)	RUNOFF COEFF	Tc (min)	C A (Acres)	l (in/hour)	Q (cfs)	Tc (min)	(C A) (Acres)	l (in/hour)	Q (cfs)	SLOPE (%)	STREET FLOW (ds)	CARRYOVER (ds)	PIPE FLOW (ds)	SLOPE (%)	PIPE SIZE (in)	LENGTH (tt)	VELOCITY (fps)	Tt (min)	REMARKS
M1	1	M1	1.02	0.78	7.9	0.79	8.22	6.5														Direct Flow to DP 1
M2	2	M2	6.48	0.78	9.4	5.05	7.57	38.3														Direct Flow to DP 2
M3	4	M3	8.40	0.78	10.8	6.55	7.08	46.4														Direct Flow to DP 3
M4	6	M4	1.17	0.44	10.0	0.51	7.36	3.8														Direct Flow to DP 4

#### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

#### UD-Detention, Version 3.07 (February 2017)

#### Project: Erie Gateway South - Annexation #8 Basin ID: Pond #1 - Basin M3

#### EURV -100-YEAR ORIFICE

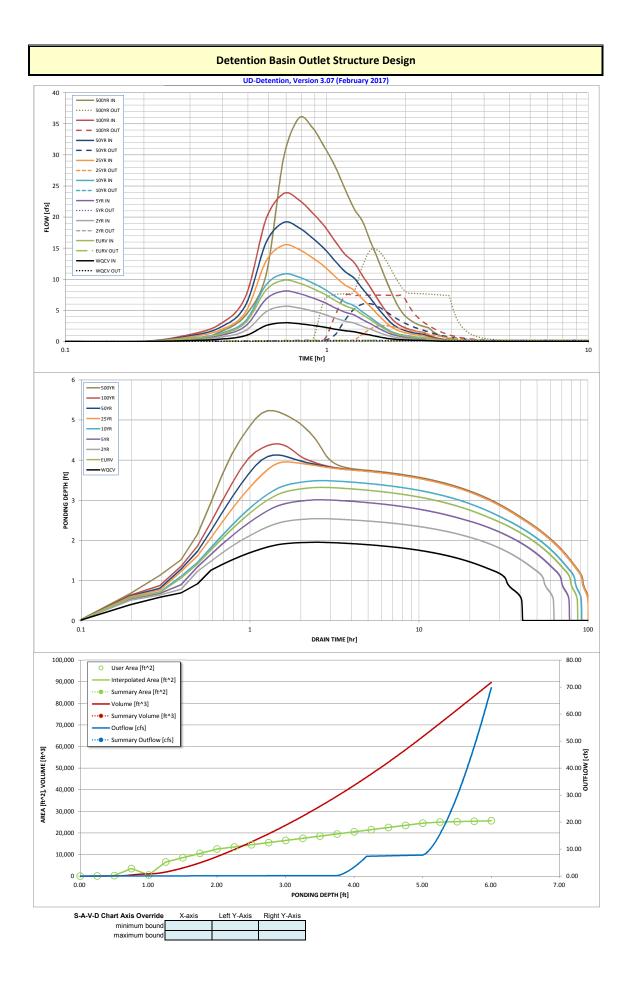
PERMANENT-		ORIFICI			
POOL	Example	Zone	Configuration	(Retention	Pond)

Example 2016	Comgura		uon Fond)	
Required Volume Calculation				
Selected BMP Type =	EDB	]		
Watershed Area =	8.40	acres		
Watershed Length =	1,106	ft		
Watershed Slope =	0.020	ft/ft		
Watershed Imperviousness =	75.00%	percent		
Percentage Hydrologic Soil Group A =	0.0%	percent		
Percentage Hydrologic Soil Group B =	100.0%	percent		
Percentage Hydrologic Soil Groups C/D =	0.0%	percent		
Desired WQCV Drain Time =	40.0	hours		
Location for 1-hr Rainfall Depths =	Erie	-		
Water Quality Capture Volume (WQCV) =	0.210	acre-feet	Optional Use	
Excess Urban Runoff Volume (EURV) =	0.696	acre-feet	1-hr Precipita	tion
2-yr Runoff Volume (P1 = 0.81 in.) =	0.397	acre-feet	0.81	inche
5-yr Runoff Volume (P1 = 1.11 in.) =	0.571	acre-feet	1.11	inche
10-yr Runoff Volume (P1 = 1.39 in.) =	0.768	acre-feet	1.39	inche
25-yr Runoff Volume (P1 = 1.84 in.) =	1.101	acre-feet	1.84	inche
50-yr Runoff Volume (P1 = 2.24 in.) =	1.364	acre-feet	2.24	inche
100-yr Runoff Volume (P1 = 2.68 in.) =	1.700	acre-feet	2.68	inche
500-yr Runoff Volume (P1 = 3.89 in.) =	2.581	acre-feet	3.89	inche
Approximate 2-yr Detention Volume =	0.373	acre-feet		
Approximate 5-yr Detention Volume =	0.537	acre-feet		
Approximate 10-yr Detention Volume =	0.721	acre-feet		
Approximate 25-yr Detention Volume =	0.896	acre-feet		
Approximate 50-yr Detention Volume =	1.008	acre-feet		
Approximate 100-yr Detention Volume =	1.143	acre-feet		

#### Stage-Storage Calculation

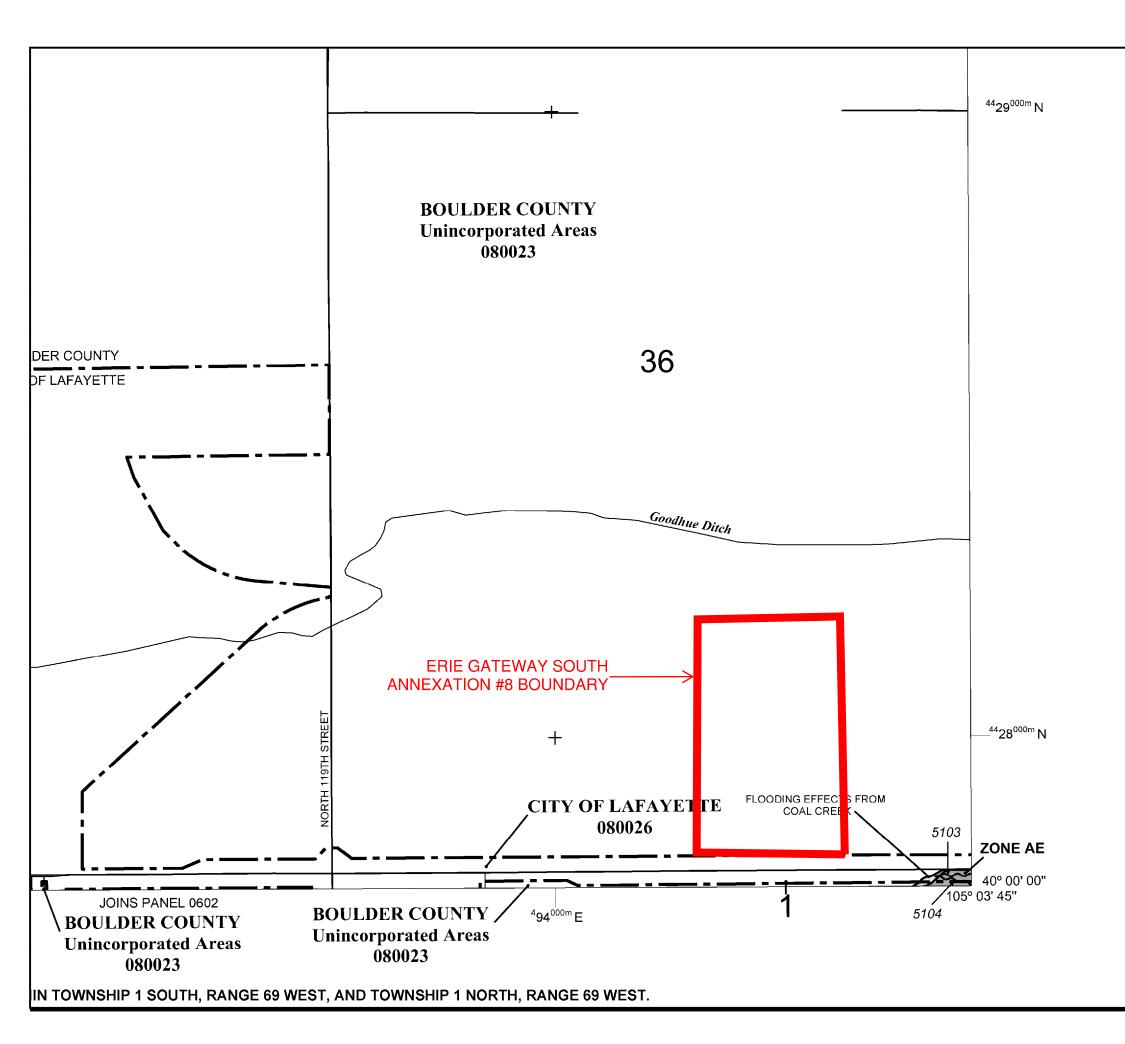
Calc

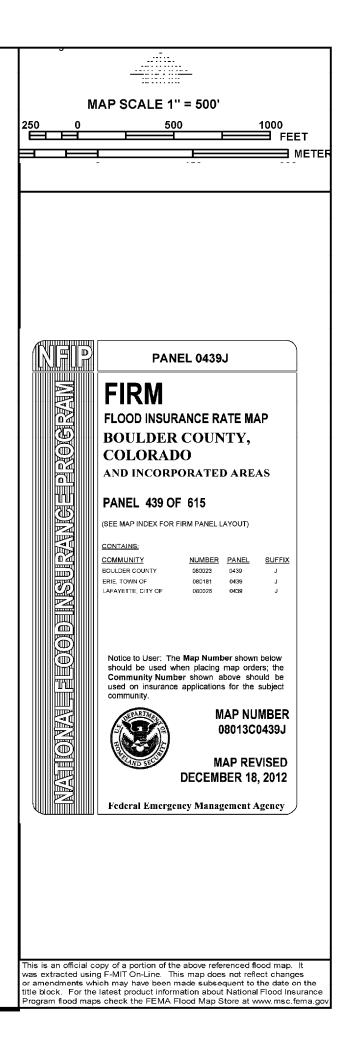
100-YR VOLUME


acre-feet	0.210	Zone 1 Volume (WQCV) =
acre-feet	0.486	Zone 2 Volume (EURV - Zone 1) =
acre-feet	0.447	Zone 3 Volume (100-year - Zones 1 & 2) =
acre-feet	1.143	Total Detention Basin Volume =
ft/3	user	Initial Surcharge Volume (ISV) =
ft	user	Initial Surcharge Depth (ISD) =
ft	user	Total Available Detention Depth (H _{total} ) =
ft	user	Depth of Trickle Channel (H _{TC} ) =
ft/ft	user	Slope of Trickle Channel (STC) =
H:V	user	Slopes of Main Basin Sides (Smain) =
	user	Basin Length-to-Width Ratio (R _{L/W} ) =

ft'2	user	Initial Surcharge Area (A _{ISV} ) =
ft	user	Surcharge Volume Length (LISV) =
ft	user	Surcharge Volume Width (WISV) =
ft	user	Depth of Basin Floor (H _{FLOOR} ) =
ft	user	Length of Basin Floor (L _{FLOOR} ) =
ft	user	Width of Basin Floor (W _{FLOOR} ) =
ft'2	user	Area of Basin Floor (A _{FLOOR} ) =
ft^3	user	Volume of Basin Floor (V _{FLOOR} ) =
ft	user	Depth of Main Basin (H _{MAIN} ) =
ft	user	Length of Main Basin (L _{MAIN} ) =
ft	user	Width of Main Basin (W _{MAIN} ) =
ft'2	user	Area of Main Basin (A _{MAIN} ) =
ft/3	user	Volume of Main Basin (V _{MAIN} ) =

ted Total Basin Volume (V_{total}) = user acre-fee


Depth Increment = Stage - Storage Description	Stage (ft)	ft Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft/2)	Optional Override Area (ft/2)	Area (acre)	Volume (ft/3)	Volum (ac-ft
Top of Micropool		0.00				0	0.000	(	(444 1)
		0.25				50	0.001		0.000
					-			6	0.000
		0.50			-	200	0.005	36	0.001
	-	0.75		-	-	3,500	0.080	465	0.011
		1.00				500	0.011	994	0.023
	-	1.25			-	6,500	0.149	1,811	0.042
	-								
		1.50			-	8,500	0.195	3,665	0.084
		1.75		-	-	10,500	0.241	6,020	0.138
	-	2.00		-	-	12,500	0.287	8,875	0.204
		2.25			-	13,500	0.310	12,249	0.281
		2.50			-	14,500	0.333	15,749	0.362
	-				-				
		2.75				15,500	0.356	19,499	0.448
		3.00			-	16,500	0.379	23,499	0.539
		3.25		-	-	17,500	0.402	27,749	0.637
		3.50			-	18,500	0.425	32,249	0.740
	-	3.75		-	-	19,500	0.448	36,999	0.849
		4.00			-	20,500	0.471	41,999	0.964
		4.25				21,500	0.494	47,249	1.085
		4.50			-	22,500	0.517	52,749	1.211
		4.75			-	23,500	0.539	58,499	1.343
		5.00		-		24,500	0.562	64,499	1.481
		5.25				25,000	0.574	70,687	1.623
	-	5.50		-		25,200	0.579	76,962	1.767
		5.75				25,400	0.583	83,287	1.912
	-	6.00		-		25,600	0.588	89,662	2.058
		0.00				23,000	0.J00	00,002	2.008
	-							1	
								1	
			-		-				
					-			1	
					-				
	-				-				
				-	-				
					-				
	-			-	-				
	-				-				
					-				
	-			-	-				
					-				
					-				
					-				
	-		-	-	-				
					-				
					-				
	-		-		-				
					-				
					-				
					-				
					-				
					-				
					-				
					-				
	-								
					-				
		-			-			1	
		1	-	-	-	1		1	
					-				
	-	1	-	-	-	1		ľ.	
					-			I	
		-	-	-	-			1	
					-			1	
					-				
			-						
					-	-		l	
	-	1	-	-	-	1		1	
					-				
				-	-				
					-	-		1	
		1	-	-	-	1		1	
	-				-	1		L	
	-								
	-			-	-				
	-				-				
	-		-						
	-								
	-								
								-           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -	
						-           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -			


		Dete	ntion Basin C	Dutlet Struct	ure Design				
Period	<b></b>		UD-Detention, Ve	rsion 3.07 (Februar	y 2017)				
	Erie Gateway Sout								
	$\sim$								
			Zone 1 (WQCV)	Stage (ft) 2.02	Zone Volume (ac-ft) 0.210	Outlet Type Orifice Plate	1		
± ±	100-YEA	R	Zone 2 (EURV)	3.40	0.210	Orifice Plate			
PERMANENT ORIFICES	ORIFICE		Zone 3 (100-year)	4.37	0.447	Weir&Pipe (Restrict)			
POOL Example Zone	Configuration (Re	etention Pond)			1.143	Total	1		
User Input: Orifice at Underdrain Outlet (typically u Underdrain Orifice Invert Depth =	sed to drain WQCV ir N/A	-	e filtration media sur	face)	Linde	Calculate erdrain Orifice Area =	ed Parameters for Ur N/A	derdrain ft ²	
Underdrain Orifice Diameter =	N/A N/A	inches	e intration media sur	lace)		ain Orifice Centroid =	N/A	feet	
		-						-	
User Input: Orifice Plate with one or more orifices of Invert of Lowest Orifice =	0.00		in WQCV and/or EUR ottom at Stage = 0 ft)			Calcu = rifice Area per Row	lated Parameters for 8.403E-03	ft ²	
Depth at top of Zone using Orifice Plate =	3.40		ottom at Stage = 0 ft)			illiptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	4.4.4.4.4		Elli	ptical Slot Centroid =	N/A	feet ft ²	
Orifice Plate: Orifice Area per Row =	1.21	sq. inches (diameter	= 1-1/4 incnes)			Elliptical Slot Area =	N/A	H ⁻	
	_ /								
User Input: Stage and Total Area of Each Orifice	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	]
Stage of Orifice Centroid (ft)	0.00	1.25	2.50						
Orifice Area (sq. inches)	1.21	1.21	1.21						J
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	]
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									J
User Input: Vertical Orifice (Cir			l			Calculated	Parameters for Ver		1
Invert of Vertical Orifice =	Not Selected	Not Selected N/A	ft (relative to basin b	ottom at Stage = 0 ft)		ertical Orifice Area =	Not Selected N/A	Not Selected N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	-	ottom at Stage = 0 ft		cal Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox) and O			1			Calculated	Parameters for Ove		1
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 3.75	Not Selected							
		N/A	ft (relative to basin bo	ttom at Stage = 0 ft)	Height of G	rate Upper Edge. H. =	Zone 3 Weir 3.75	Not Selected	feet
Overflow Weir Front Edge Length =	2.92	N/A N/A	ft (relative to basin bo feet	ttom at Stage = 0 ft)		rate Upper Edge, H _t = Weir Slope Length =	20ne 3 Weir 3.75 2.92	Not Selected N/A N/A	feet feet
Overflow Weir Slope =	2.92 0.00	N/A N/A	feet H:V (enter zero for fl		Over Flow Grate Open Area /	Weir Slope Length = 100-yr Orifice Area =	3.75 2.92 9.96	N/A N/A N/A	feet should be <u>&gt;</u> 4
	2.92	N/A	feet	at grate)	Over Flow Grate Open Area / Overflow Grate Op	Weir Slope Length =	3.75 2.92	N/A N/A	feet
Overflow Weir Slope = Horiz. Length of Weir Sides =	2.92 0.00 2.92	N/A N/A N/A	feet H:V (enter zero for fla feet	at grate)	Over Flow Grate Open Area / Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	3.75 2.92 9.96 5.97	N/A N/A N/A N/A	feet should be <u>≥</u> 4 ft ²
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	2.92 0.00 2.92 70% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl: feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	3.75 2.92 9.96 5.97 2.98	N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	2.92 0.00 2.92 70% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl: feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	3.75 2.92 9.96 5.97 2.98	N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	2.92 0.00 2.92 70% 50% ircular Orifice, Restric Zone 3 Restrictor 2.60	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A	feet H:V (enter zero for fl: feet %, grate open area/t % <b>ular Orifice)</b> ft (distance below basi	at grate) otal area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = <b>Calculated Parameter</b> Outlet Orifice Area =	3.75 2.92 9.96 5.97 2.98 rs for Outlet Pipe w/ Zone 3 Restrictor 0.60	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A	feet should be $\geq 4$ ft ² ft ² te ft ² ft ² ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	2.92 0.00 2.92 70% 50% ircular Orifice, Restric Zone 3 Restrictor	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % <b>ular Orifice)</b>	at grate) otal area n bottom at Stage = 0 !	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ( (t) (t)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	3.75 2.92 9.96 5.97 2.98 rs for Outlet Pipe w/ Zone 3 Restrictor	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected	feet should be ≥ 4 ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sides Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	2.92 0.00 2.92 70% 50% ircular Orifice, Restrictor 2.60 18.00 6.70	N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	feet H:V (enter zero for fl; feet %, grate open area/t % <b>ular Orifice)</b> ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 !	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ( (t) (t)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	3.75 2.92 9.96 5.97 2.98 rs for Outlet Pipe w/ Zone 3 Restrictor 0.60 0.33 1.31	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet should be $\geq 4$ ft ² ft ² ft ² ft ² feet
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan	2.92 0.00 2.92 70% 50% ircular Orifice, Restrict 2.60 18.00 6.70 gular or Trapezoidal)	N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	feet H:V (enter zero for fi: feet %, grate open area/t % <b>ular Orifice)</b> ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 ! Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ( (t) (t) Out Central Angle of Rest	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculat	3.75 2.92 9.96 5.97 2.98 rs for Outlet Pipe w/ Zone 3 Restrictor 0.60 0.33 1.31 ted Parameters for S	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A	feet should be $\geq 4$ ft ² ft ² ft ² ft ² feet
Overflow Weir Slope = Horiz. Length of Weir Sides Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	2.92 0.00 2.92 70% 50% ircular Orifice, Restrictor 2.60 18.00 6.70	N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	feet H:V (enter zero for fl; feet %, grate open area/t % <b>ular Orifice)</b> ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 I Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O ( tt) Out Central Angle of Rest Spillway	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	3.75 2.92 9.96 5.97 2.98 rs for Outlet Pipe w/ Zone 3 Restrictor 0.60 0.33 1.31	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet should be $\geq 4$ ft ² ft ² ft ² ft ² feet
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	2.92 0.00 2.92 70% 50% incular Orifice, Restrictor 2.60 18.00 6.70 gular or Trapezoidal) 5.00 20.00 0.60	N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A t (relative to basin t feet H:V	feet H:V (enter zero for fi: feet %, grate open area/t % <b>ular Orifice)</b> ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 I Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ( tt) Central Angle of Rest Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = <b>Calculated Paramete</b> Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = <b>Calcula</b> y Design Flow Depth=	3.75 2.92 9.96 5.97 2.98 rs for Outlet Pipe w/ Zone 3 Restrictor 0.60 0.33 1.31 ted Parameters for S 0.47	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet	feet should be $\geq 4$ ft ² ft ² ft ² ft ² feet
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length =	2.92 0.00 2.92 70% 50% ircular Orifice, Restric Zone 3 Restrictor 2.60 18.00 6.70 gular or Trapezoidal) 5.00 20.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin the feet	feet H:V (enter zero for fi: feet %, grate open area/t % <b>ular Orifice)</b> ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 I Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ( tt) Central Angle of Rest Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculat v Design Flow Depth= at Top of Freeboard =	3.75 2.92 9.96 5.97 2.98 <b>cs for Outlet Pipe w/</b> <b>Zone 3 Restrictor</b> 0.60 0.33 1.31 <b>ted Parameters for S</b> 0.47 6.47	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet feet	feet should be $\geq 4$ ft ² ft ² ft ² ft ² feet
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	2.92 0.00 2.92 70% 50% ircular Orifice, Restrict 2.60 18.00 6.70 gular or Trapezoidal) 5.00 20.00 0.60 1.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin t feet H:V feet	feet H:V (enter zero for fi: feet %, grate open area/t % <b>ular Orifice)</b> ft (distance below basi inches inches inches ottom at Stage = 0 ft)	at grate) otal area n bottom at Stage = 0 I Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ( tt) Out Central Angle of Rest Spillway Stage a Basin Area a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula y Design Flow Depth= at Top of Freeboard = at Top of Freeboard =	3.75 2.92 9.96 5.97 2.98 s for Outlet Pipe w/ Zone 3 Restrictor 0.60 0.33 1.31 ted Parameters for S 0.47 6.47 0.59	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A feet feet feet acres	feet should be ≥ 4 ft ² ft ² fe ft ² feet radians
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	2.92 0.00 2.92 70% 50% ircular Orifice, Restrict 2.60 18.00 6.70 gular or Trapezoidal) 5.00 20.00 0.60 1.00	N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A t (relative to basin t feet H:V	feet H:V (enter zero for fi: feet %, grate open area/t % <b>ular Orifice)</b> ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 I Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ( tt) Central Angle of Rest Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculat v Design Flow Depth= at Top of Freeboard =	3.75 2.92 9.96 5.97 2.98 <b>cs for Outlet Pipe w/</b> <b>Zone 3 Restrictor</b> 0.60 0.33 1.31 <b>ted Parameters for S</b> 0.47 6.47	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet feet	feet should be $\geq 4$ ft ² ft ² ft ² ft ² feet
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = One-Hour Rainfall Depth (in) =	2.92 0.00 2.92 70% 50% incular Orifice, Restrictor 2.60 18.00 6.70 gular or Trapezoidal) 5.00 20.00 0.60 1.00	N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV	feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year	at grate) otal area n bottom at Stage = 0 1 Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ( ( tt) Out Central Angle of Rest Spillway Stage a Basin Area a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculat v Design Flow Depth= at Top of Freeboard = 25 Year	3.75 2.92 9.96 5.97 2.98 rs for Outlet Pipe w/ Zone 3 Restrictor 0.60 0.33 1.31 tted Parameters for S 0.47 6.47 0.59	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway Ext Length = Spillway Ex	2.92 0.00 2.92 70% 50% ircular Orifice, Restrictor 2.60 18.00 6.70 gular or Trapezoidal) 5.00 20.00 0.60 1.00 .20 0.20 0.21 0.209	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin the feet H:V feet EURV 1.07 0.696	feet H:V (enter zero for fil feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft) <u>2 Year</u> 0.81	at grate) otal area n bottom at Stage = 0 1 Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O ( t) Central Angle of Rest Spillway Stage a Basin Area a 1.39 0.768 0.768	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = <b>Calculated Parameter</b> Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = <b>Calcula</b> v Design Flow Depth= t Top of Freeboard = 1.301 1.101 1.102	3.75 2.92 9.96 5.97 2.98 rs for Outlet Pipe w/ Zone 3 Restrictor 0.60 0.33 1.31 ted Parameters for S 0.47 0.47 6.47 0.59	N/A N/A N/A N/A N/A Flow Restriction Plat NA N/A N/A N/A N/A ipillway feet feet feet acres	feet should be ≥ 4 ft ² ft ² fe fet radians <u>500 Year</u> 3.89
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	2.92 0.00 2.92 70% 50% ircular Orifice, Restrice 2.60 18.00 6.70 gular or Trapezoidal) 5.00 20.00 0.60 1.00 	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A N/A ft (relative to basin the feet H:V feet H:V feet EURV 1.07 0.696 0.00	feet H:V (enter zero for fil feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 0.81 0.397 0.01	at grate) otal area in bottom at Stage = 0 1 Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Gr	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = <b>Calculated Parameter</b> Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = <b>Calcula</b> to point Freeboard = th Top of Freeboard = 1.84 1.101 1.102 0.50	3.75 2.92 9.96 5.97 2.98 rs for Outlet Pipe w/ Zone 3 Restrictor 0.60 0.33 1.31 ted Parameters for S 0.47 6.47 0.59 50 Year 2.24 1.365 0.76	N/A           N/A           N/A           N/A           N/A           Flow Restriction Plat           Not Selected           N/A           N/A           interval           N/A           A           A           A           A           A           B           A </td <td>feet should be ≥ 4 ft² ft² fe ft² feet radians <u>2.581</u> <u>1.89</u></td>	feet should be ≥ 4 ft ² ft ² fe ft ² feet radians <u>2.581</u> <u>1.89</u>
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Expension Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) =	2.92 0.00 2.92 70% 50% ircular Orifice, Restrictor 2.60 18.00 6.70 gular or Trapezoidal) 5.00 0.60 1.00 WQCV 0.53 0.210 0.209 0.00 0.00 3.0	N/A           N/A           N/A           N/A           N/A           tor Plate, or Rectang           Not Selected           N/A           It (relative to basin the feet           H:V           feet           H:V           feet           0.696           0.696           0.00           9.8	feet H:V (enter zero for fil feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 0.81 0.397 0.397 0.01 5.6	at grate) otal area n bottom at Stage = 0 1 Half-1 	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Gr	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = <b>Calculated Parameter</b> Outlet Orifice Centroid = rictor Plate on Pipe = <b>Calcula</b> v Design Flow Depth= at Top of Freeboard = 1.84 1.101 1.102 0.50 4.2 15.5	3.75 2.92 9.96 5.97 2.98 rs for Outlet Pipe w/ Zone 3 Restrictor 0.60 0.33 1.31 rted Parameters for S 0.47 6.47 0.59 50 Year 2.24 1.365 0.76 0.76 0.76 0.76 0.76 0.76	N/A           N/A           N/A           N/A           N/A           Flow Restriction Plat           Notation Plat           NA           N/A	feet should be $\geq$ 4 ft ² ft ² feet radians 2.581 2.583 1.89 15.9 35.9
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe W/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest = Predevelopment Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Nufflow Q (cfs) =	2.92 0.00 2.92 70% 50% ircular Orifice, Restrictor 2.60 18.00 6.70 gular or Trapezoidal) 5.00 20.00 0.60 1.00 	N/A N/A N/A N/A N/A N/A Tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 0.696 0.696 0.00 0.0 9.8 0.2	feet H:V (enter zero for file feet %, grate open area/t % ular Orifice) ft (distance below basis inches inches ottom at Stage = 0 ft) 2 Year 0.81 0.397 0.01 0.1	at grate) otal area n bottom at Stage = 0 1 Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Spillway Stage a Basin Area a Overflow Grate O Overflow Grate	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = <b>Calculated Parameter</b> Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = <b>Calcula</b> v Design Flow Depth= t Top of Freeboard = 1.101 1.102 0.50 4.2 15.5 2.6	3.75 2.92 9.96 5.97 2.98 rs for Outlet Pipe w/ Zone 3 Restrictor 0.60 0.33 1.31 ted Parameters for S 0.47 6.47 0.59 50 Year 2.24 1.364 1.365 0.76 6.4 19.1 6.1	N/A           N/A           N/A           N/A           N/A           Flow Restriction Plat           Not Selected           N/A           N/A           N/A           N/A           ipillway           feet           feet           acres           100 Year           2.68           1.700           1.701           1.10           9.2           23.8           7.5	feet should be ≥ 4 ft ² ft ² fe fet radians 2.583 1.89 15.9 35.9 14.7
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Calculated Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) = Inflow Hydrograph Volume (acreft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow Lorenting Flow = Structure Controlling Flow =	2.92 0.00 2.92 70% 50% ircular Orifice, Restrict 2.60 18.00 6.70 gular or Trapezoidal) 5.00 20.00 0.60 1.00 0.60 1.00 0.209 0.209 0.00 0.00 0.00 0.00 3.0 0.1 N/A Plate	N/A           N/A           N/A           N/A           N/A           tor Plate, or Rectang           Not Selected           N/A           N/A           ft (relative to basin the feet           H:V           feet           H:V           6           0.696           0.696           0.00           9.8           0.2           N/A           Plate	feet H:V (enter zero for fil feet %, grate open area/t % ular Orifice) ft (distance below basis inches inches ottom at Stage = 0 ft) 2 Year 0.397 0.397 0.397 0.01 0.1 5.6 0.1 N/A Plate	at grate) otal area n bottom at Stage = 0 1 Half-1 5 Year 1.11 0.571 0.571 0.01 0.1 8.1 0.2 1.4 Plate	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Gr	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = <b>Calculated Parameter</b> Outlet Orifice Centroid = rictor Plate on Pipe = <b>Calcula</b> v Design Flow Depth= at Top of Freeboard = 1.84 1.101 1.102 0.50 4.2 15.5 2.6 0.6 Overflow Grate 1	3.75 2.92 9.96 5.97 2.98 <b>7 cone 3 Restrictor</b> 0.60 0.33 1.31 <b>1.61</b> <b>1.64</b> <b>1.365</b> 0.76 6.4 <b>1.365</b> 0.76 6.4 <b>1.365</b> 0.76 6.4 <b>1.30</b>	N/A           N/A           N/A           N/A           N/A           Flow Restriction Plat           Not Selected           N/A           Difference           feet           feet           1.700           1.10           9.2           23.8           7.5           0.8           Outlet Plate 1	feet should be ≥ 4 ft ² ft ² feet radians
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway Erst Length = Spi	2.92 0.00 2.92 70% 50% ircular Orifice, Restrictor 2.60 18.00 6.70 gular or Trapezoidal) 5.00 20.00 0.60 1.00 WQCV 0.53 0.210 0.209 0.00 0.00 0.00 0.01 N/A Plate N/A	N/A           N/A           N/A           N/A           N/A           tor Plate, or Rectang           Not Selected           N/A           It (relative to basin the feet           H:V           feet           H:V           0.696           0.00           0.696           0.00           9.8           0.2           N/A	feet H:V (enter zero for file feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 0.81 0.397 0.01 0.1 5.6 0.1 N/A Plate N/A	at grate) otal area n bottom at Stage = 0 1 Half-1 1.11 0.571 0.01 0.1 0.1 8.1 0.2 1.4 Plate N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Gr	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = <b>Calculated Parameter</b> Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = <b>Calcula</b> v Design Flow Depth= t Top of Freeboard = 1.84 1.101 1.102 0.50 4.2 1.5.5 2.6 0.6 Overflow Grate 1 0.4	3.75 2.92 9.96 5.97 2.98 rs for Outlet Pipe w/ Zone 3 Restrictor 0.60 0.33 1.31 rted Parameters for S 0.47 6.47 0.59 50 Year 2.24 1.364 1.365 0.76 6.4 19.1 6.1 1.0 Overflow Grate 1 1.0	N/A           N/A           N/A           N/A           N/A           Flow Restriction Plat           Not Selected           N/A           Spillway           feet           acres           1.700           1.10           9.2           23.8           7.5           0.8           Outlet Plate 1           1.2	feet should be ≥ 4 ft ² ft ² fe ft ² feet radians 2.581 1.89 1.5.9 35.9 14.7 0.9 Spillway 1.3
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, g (cfs) acre Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours)	2.92 0.00 2.92 70% 50% ircular Orifice, Restrictor 2.60 18.00 6.70 gular or Trapezoidal) 5.00 20.00 0.60 1.00 0.60 1.00 0.209 0.00 0.209 0.00 0.00 3.0 0.1 N/A Plate N/A 39	N/A           N/A           N/A           N/A           N/A           itor Plate, or Rectang           Not Selected           N/A           N/A           ft (relative to basin the feet           H:V           feet           H:V           feet           0.696           0.00           0.696           0.00           9.8           0.2           N/A           Plate           N/A           80	feet H:V (enter zero for fil feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 0.81 0.397 0.01 0.1 5.6 0.1 0.1 5.6 0.1 N/A Plate N/A 59	at grate) otal area n bottom at Stage = 0 1 Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate Overflow Stage a Basin Area a Basin Area a Doverflow Grate Overflow Grate Overflow Stage a Basin Area a Doverflow Grate Overflow Stage a Basin Area a Doverflow Grate Overflow Stage a Doverflow Grate Overflow Stage a Basin Area a Doverflow Grate Overflow Stage a Basin Area a Doverflow Grate Overflow Stage a Doverflow Grate Overflow Stage a Basin Area a Doverflow Grate Overflow Stage a Doverflow Grate Overflow Grate Overflow Stage a Doverflow Grate Overflow Grate Overflow Stage a Doverflow Grate Overflow Grate Overflow Grate Overflow Stage a Doverflow Grate Overflow G	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = <b>Calculated Parameter</b> Outlet Orifice Centroid = rictor Plate on Pipe = <b>Calcula</b> / Design Flow Depth= t Top of Freeboard = 1.84 1.101 1.102 0.50 4.2 1.5.5 2.6 0.6 Overflow Grate 1 0.4 N/A 90	3.75 2.92 9.96 5.97 2.98 <b>75 for Outlet Pipe w/</b> <b>Zone 3 Restrictor</b> 0.60 0.33 1.31 <b>164 Parameters for S</b> 0.47 6.47 0.59 <b>50 Year</b> 2.24 1.364 <b>1.365</b> 0.76 6.4 1.365 0.76 6.4 1.9.1 6.1 1.0 <b>0</b> Veerflow Grate 1 1.0 <b>N</b> /A 88	N/A           N/A           N/A           N/A           N/A           N/A           Not Selected           N/A           1.700           1.701           1.10           9.2           23.8           7.5           0.8           Outlet Plate 1           1.2           N/A           85	feet should be ≥ 4 ft ² ft ² ft ² feet radians 2.581 2.583 1.89 1.5.9 15.9 14.7 0.9 Spillway 1.3 N/A 81
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest = Predevelopment Valume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	2.92 0.00 2.92 70% 50% ircular Orifice, Restrictor 2.60 18.00 6.70 gular or Trapezoidal) 5.00 0.20.00 0.60 1.00 WQCV 0.53 0.210 0.209 0.00 0.00 3.0 0.1 N/A Plate N/A N/A Plate N/A N/A	N/A           N/A           N/A           N/A           N/A           tor Plate, or Rectang           Not Selected           N/A           N/A           ft (relative to basin the feet           H:V           feet           H:V           feet           0.696           0.696           0.00           9.8           0.2           N/A           Plate           N/A           80           84	feet H:V (enter zero for fil feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 0.81 0.397 0.397 0.397 0.01 5.6 0.1 N/A Plate N/A N/A N/A 59 61	at grate) otal area n bottom at Stage = 0 1 Half-1 1.11 0.571 0.01 0.1 8.1 0.2 1.4 Plate N/A N/A N/A N/A N/A N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Gr	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = <b>Calculated Parameter</b> Outlet Orifice Centroid = rictor Plate on Pipe = <b>Calcula</b> v Design Flow Depth= th Top of Freeboard = 1.84 1.101 1.102 0.50 4.2 15.5 2.6 0.6 Overflow Grate 1 0.4 N/A 90 97	3.75 2.92 9.96 5.97 2.98 <b>7</b> <b>7</b> <b>7</b> <b>7</b> <b>7</b> <b>7</b> <b>7</b> <b>7</b> <b>7</b> <b>7</b>	N/A           N/A           N/A           N/A           N/A           N/A           NA           NA           NA           NA           NA           N/A           100 Year           2.68           1.700           9.2           2.3.8           7.5           0.8           Outlet Plate 1           1.2           N/A           85           95	feet should be ≥ 4 ft ² ft ² feet radians 2.581 2.583 1.89 15.9 35.9 14.7 0.9 35.9 14.7 0.9 35.9 14.7 0.9 35.9
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours)	2.92 0.00 2.92 70% 50% ircular Orifice, Restrictor 2.60 18.00 6.70 gular or Trapezoidal) 5.00 20.00 0.60 1.00 0.60 1.00 0.209 0.00 0.209 0.00 0.00 3.0 0.1 N/A Plate N/A 39	N/A           N/A           N/A           N/A           N/A           itor Plate, or Rectang           Not Selected           N/A           N/A           ft (relative to basin the feet           H:V           feet           H:V           feet           0.696           0.00           0.696           0.00           9.8           0.2           N/A           Plate           N/A           80	feet H:V (enter zero for fil feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 0.81 0.397 0.01 0.1 5.6 0.1 0.1 5.6 0.1 N/A Plate N/A 59	at grate) otal area n bottom at Stage = 0 1 Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate Overflow Stage a Basin Area a Basin Area a Doverflow Grate Overflow Grate Overflow Stage a Basin Area a Doverflow Grate Overflow Stage a Basin Area a Doverflow Grate Overflow Stage a Doverflow Grate Overflow Stage a Basin Area a Doverflow Grate Overflow Stage a Basin Area a Doverflow Grate Overflow Stage a Doverflow Grate Overflow Stage a Basin Area a Doverflow Grate Overflow Stage a Doverflow Grate Overflow Grate Overflow Stage a Doverflow Grate Overflow Grate Overflow Stage a Doverflow Grate Overflow Grate Overflow Grate Overflow Stage a Doverflow Grate Overflow G	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = <b>Calculated Parameter</b> Outlet Orifice Centroid = rictor Plate on Pipe = <b>Calcula</b> / Design Flow Depth= t Top of Freeboard = 1.84 1.101 1.102 0.50 4.2 1.5.5 2.6 0.6 Overflow Grate 1 0.4 N/A 90	3.75 2.92 9.96 5.97 2.98 <b>75 for Outlet Pipe w/</b> <b>Zone 3 Restrictor</b> 0.60 0.33 1.31 <b>164 Parameters for S</b> 0.47 6.47 0.59 <b>50 Year</b> 2.24 1.364 <b>1.365</b> 0.76 6.4 1.365 0.76 6.4 1.9.1 6.1 1.0 <b>0</b> Veerflow Grate 1 1.0 <b>N</b> /A 88	N/A           N/A           N/A           N/A           N/A           N/A           Not Selected           N/A           1.700           1.701           1.10           9.2           23.8           7.5           0.8           Outlet Plate 1           1.2           N/A           85	feet should be ≥ 4 ft ² ft ² ft ² feet radians



# **APPENDIX C**

FIRM MAPS NRCS SOILS REPORT







United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

# Custom Soil Resource Report for Boulder County Area, Colorado



## Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

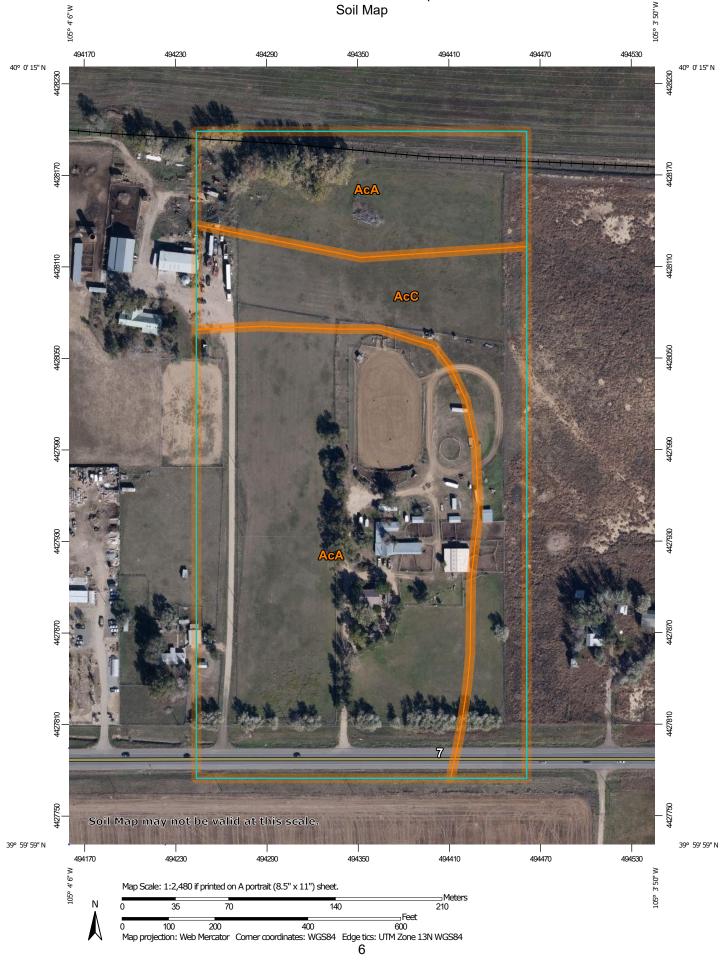
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.


# Contents

Preface	. 2
Soil Map	
Soil Map	
Legend	
Map Unit Legend	. 8
Map Unit Descriptions	. 8
Boulder County Area, Colorado	10
AcA—Ascalon sandy loam, 0 to 3 percent slopes	10
AcC—Ascalon sandy loam, 3 to 5 percent slopes	11

# Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

#### Custom Soil Resource Report Soil Map



	MAP LEGEND			MAP INFORMATION		
	<b>terest (AOI)</b> Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.		
Soils	Soil Map Unit Polygons	00 V	Very Stony Spot Wet Spot	Warning: Soil Map may not be valid at this scale.		
	Soil Map Unit Lines Soil Map Unit Points	۵ •	Other Special Line Features	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of		
Special (2)	÷		tures Streams and Canals	contrasting soils that could have been shown at a more detailed scale.		
⊠ ¥ ♦	Clay Spot Closed Depression	Transporta	Rails	Please rely on the bar scale on each map sheet for map measurements.		
× *	Gravel Pit Gravelly Spot	~	Interstate Highways US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)		
 Θ Λ	Landfill Lava Flow	No skarou	Major Roads Local Roads	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts		
*	Marsh or swamp Mine or Quarry	Backgrou	Aerial Photography Albers equal-area conic projection, sh	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.		
0	Miscellaneous Water Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.		
~ +	Rock Outcrop Saline Spot			Soil Survey Area: Boulder County Area, Colorado Survey Area Data: Version 15, Sep 10, 2018		
··· +·	Sandy Spot Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.		
\$ \$	Sinkhole Slide or Slip			Date(s) aerial images were photographed: Oct 1, 2018—Oct 31, 2018		
, Ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		

### **Map Unit Legend**

		-	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AcA	Ascalon sandy loam, 0 to 3 percent slopes	17.0	74.4%
AcC	Ascalon sandy loam, 3 to 5 percent slopes	5.8	25.6%
Totals for Area of Interest		22.9	100.0%

### **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

### **Boulder County Area, Colorado**

### AcA—Ascalon sandy loam, 0 to 3 percent slopes

#### **Map Unit Setting**

National map unit symbol: 2swl3 Elevation: 3,870 to 5,960 feet Mean annual precipitation: 12 to 16 inches Mean annual air temperature: 46 to 57 degrees F Frost-free period: 135 to 160 days Farmland classification: Prime farmland if irrigated

#### **Map Unit Composition**

Ascalon and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Ascalon**

#### Setting

Landform: Interfluves Landform position (two-dimensional): Summit Down-slope shape: Linear Across-slope shape: Linear Parent material: Wind-reworked alluvium and/or calcareous sandy eolian deposits

#### **Typical profile**

Ap - 0 to 6 inches: sandy loam Bt1 - 6 to 12 inches: sandy clay loam Bt2 - 12 to 19 inches: sandy clay loam Bk - 19 to 35 inches: sandy clay loam C - 35 to 80 inches: sandy loam

#### **Properties and qualities**

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 10 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Moderate (about 7.7 inches)

#### Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4c Hydrologic Soil Group: B Ecological site: Sandy Plains (R067BY024CO) Hydric soil rating: No

#### **Minor Components**

#### Olnest

Percent of map unit: 10 percent Landform: Interfluves Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: Sandy Plains (R067BY024CO) Hydric soil rating: No

#### Vona

Percent of map unit: 5 percent Landform: Interfluves Landform position (two-dimensional): Summit Down-slope shape: Linear Across-slope shape: Linear Ecological site: Sandy Plains (R067BY024CO) Hydric soil rating: No

#### Acc—Ascalon sandy loam, 3 to 5 percent slopes

#### Map Unit Setting

National map unit symbol: 2tlnt Elevation: 3,550 to 5,970 feet Mean annual precipitation: 12 to 16 inches Mean annual air temperature: 46 to 57 degrees F Frost-free period: 135 to 160 days Farmland classification: Prime farmland if irrigated

#### Map Unit Composition

Ascalon and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Ascalon**

#### Setting

Landform: Interfluves Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Linear Parent material: Wind-reworked alluvium and/or calcareous sandy eolian deposits

#### **Typical profile**

*Ap - 0 to 6 inches:* sandy loam *Bt1 - 6 to 12 inches:* sandy clay loam *Bt2 - 12 to 19 inches:* sandy clay loam *Bk - 19 to 35 inches:* sandy clay loam *C - 35 to 80 inches:* sandy loam

#### **Properties and qualities**

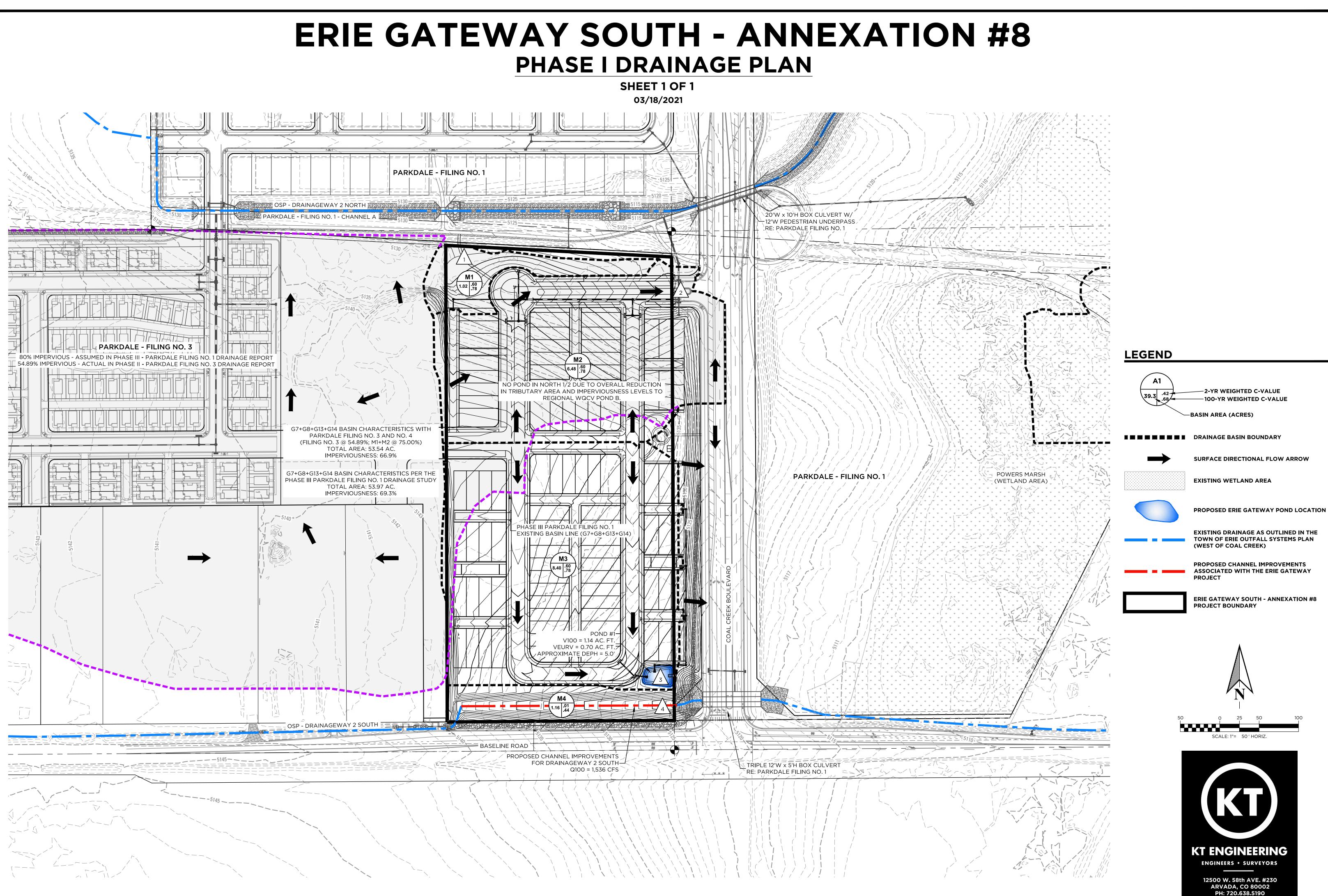
Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 10 percent
Salinity, maximum in profile: Nonsaline (0.1 to 1.9 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Moderate (about 6.9 inches)

#### Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4c Hydrologic Soil Group: B Ecological site: Sandy Plains (R067BY024CO), Sandy Plains (R072XY111KS) Hydric soil rating: No

#### **Minor Components**

#### Stoneham


Percent of map unit: 10 percent Landform: Interfluves Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Linear Ecological site: Loamy Plains (R067BY002CO), Loamy Tableland (R072XY100KS) Hydric soil rating: No

#### Vona

Percent of map unit: 8 percent Landform: Interfluves Landform position (two-dimensional): Backslope, footslope, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Linear Ecological site: Sandy Plains (R067BY024CO), Sandy Plains (R072XY111KS) Hydric soil rating: No

#### Platner

Percent of map unit: 2 percent Landform: Interfluves Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Linear Ecological site: Loamy Plains (R067BY002CO), Loamy Tableland (R072XY100KS)

